
 adts.sml Page 1 of 2
(* CS 251: ML Modules and Abstract Data Types *)

signature MATHLIB =
sig
 val fact : int -> int
 val half_pi : real
 (* val doubler : int -> int *) (* can hide bindings from clients *)
end

structure MyMathLib : > MATHLIB =
struct
 fun fact 0 = 1
 | fact x = x * fact (x - 1)

 val half_pi = Math.pi / 2.0

 fun doubler y = y + y
end

val pi = MyMathLib.half_pi + MyMathLib.half_pi

(* val twenty_eight = MyMathLib.doubler 14 *)

(* This signature hides gcd and reduce. Clients cannot assume they
 exist or call them with unexpected inputs. But clients can still
 build rational values directly with the constructors Whole and
 Frac. This makes it impossible to maintain invariants about
 rationals, so we might have negative denominators, which some
 functions do not handle, and toString may print a non-reduced
 fraction. *)
signature RATIONAL_CONCRETE =
sig
 datatype rational = Frac of int * int | Whole of int
 exception BadFrac
 val make_frac : int * int -> rational
 val add : rational * rational -> rational
 val toString : rational -> string
end

(* This signature abstracts the rational type. Clients can acquire
 values of type rational using make_frac and manipulate them using
 add and toString, but they have know way to inspect the
 representation of these values or create them on their own. They
 are tightly sealed black boxes. This ensures that any invariants
 established and assumed inside an implementation of this signature
 cannot be violated by external code.

 This is a true Abstract Data Type. *)
signature RATIONAL =
sig
 type rational (* type now abstract *)
 exception BadFrac
 val make_frac : int * int -> rational
 val add : rational * rational -> rational
 val toString : rational -> string
end

(* As a cute trick, it is actually okay to expose the Whole
 function since no value breaks our invariants, and different

 implementations can still implement Whole differently.
 Clients know only that Whole is a function.
 Cannot use as pattern. *)
signature RATIONAL_WHOLE =
sig
 type rational (* type still abstract *)
 exception BadFrac
 val Whole : int -> rational
 val make_frac : int * int -> rational
 val add : rational * rational -> rational
 val toString : rational -> string
end

(* Can ascribe any of the 3 signatures above. We choose to use the
 Abstract Data Type. *)
structure Rational : > RATIONAL =
struct

 (* Invariant 1: all denominators > 0
 Invariant 2: rationals kept in reduced form *)

 datatype rational = Whole of int | Frac of int*int
 exception BadFrac

 (* gcd and reduce help keep fractions reduced,
 but clients need not know about them *)
 (* they _assume_ their inputs are not negative *)
 fun gcd (x,y) =
 if x =y
 then x
 else if x < y
 then gcd (x,y -x)
 else gcd (y,x)

 fun reduce r =
 case r of
 Whole _ => r
 | Frac (x,y) =>
 if x =0
 then Whole 0
 else let val d = gcd (abs x,y) in (* using invariant 1 *)
 if d =y
 then Whole (x div d)
 else Frac (x div d, y div d)
 end

 (* When making a frac, ban zero denominators and put valid fractions
 in reduce form. *)
 fun make_frac (x,0) = raise BadFrac
 | make_frac (x,y) =
 if y < 0
 then reduce (Frac (˜x,˜y))
 else reduce (Frac (x,y))

 (* Using math properties, both invariants hold for the result
 assuming they hold for the arguments. *)
 fun add (Whole (i), Whole (j)) = Whole (i +j)
 | add (Whole (i), Frac (j,k)) = Frac (j +k*i,k)
 | add (Frac (j,k), Whole (i)) = Frac (j +k*i,k)
 | add (Frac (a,b), Frac (c,d)) = reduce (Frac (a *d + b *c, b *d))

 adts.sml Page 2 of 2

 (* Assuming r is in reduced form, print r in reduced form *)
 fun toString (Whole i) = Int.toString i
 | toString (Frac (a,b)) = (Int.toString a) ^ "/" ^ (Int.toString b)

end

(* This structure can have all three signatures we gave
 Rational, and/but it is *equivalent* under signatures
 RATIONAL and RATIONAL_WHOLE.

 This structure does not reduce fractions until printing.
 *)
structure UnreducedRational : > RATIONAL (* or the others *) =
struct
 datatype rational = Whole of int | Frac of int*int
 exception BadFrac

 fun make_frac (x,0) = raise BadFrac
 | make_frac (x,y) =
 if y < 0
 then Frac (˜x,˜y)
 else Frac (x,y)

 fun add (Whole (i), Whole (j)) = Whole (i +j)
 | add (Whole (i), Frac (j,k)) = Frac (j +k*i,k)
 | add (Frac (j,k), Whole (i)) = Frac (j +k*i,k)
 | add (Frac (a,b), Frac (c,d)) = Frac (a *d + b *c, b *d)

 fun toString r =
 let fun gcd (x,y) =
 if x =y
 then x
 else if x < y
 then gcd (x,y -x)
 else gcd (y,x)

 fun reduce r =
 case r of
 Whole _ => r
 | Frac (x,y) =>
 if x =0
 then Whole 0
 else
 let val d = gcd (abs x,y) in
 if d =y
 then Whole (x div d)
 else Frac (x div d, y div d)
 end
 in
 case reduce r of
 Whole i => Int.toString i
 | Frac (a,b) => (Int.toString a) ^ "/" ^ (Int.toString b)
 end
end

(* This structure uses a different concrete representation of the
 abstract type. We cannot ascribe signature RATIONAL_CONCRETE to

 it. To ascribe RATIONAL_WHOLE, we must add a Whole function. It
 is indistinguishable from Rational under these two signatures. *)
structure PairRational : > RATIONAL (* or RATIONAL_WHOLE *)= struct
 type rational = int * int
 exception BadFrac

 fun make_frac (x,0) = raise BadFrac
 | make_frac (x,y) =
 if y < 0
 then (˜x,˜y)
 else (x,y)

 fun Whole i = (i,1)

 fun add ((a,b),(c,d)) = (a *d + c *b, b *d)

 fun toString (0,y) = "0"
 | toString (x,y) =
 let fun gcd (x,y) =
 if x =y
 then x
 else if x < y
 then gcd(x,y -x)
 else gcd(y,x)
 val d = gcd (abs x,y)
 val num = x div d
 val denom = y div d
 val numString = Int.toString num
 in
 if denom =1
 then numString
 else numString ^ "/" ^ (Int.toString denom)
 end
end

