Introduction to Racket, a dialect of LISP:
Expressions and Bindings

CS251 Programming Languages
Spring 2016, Lyn Turbak

Department of Computer Science
Wellesley College

LISP: designed by John McCarthy, 1958
published 1960

3-2

LISP: implemented by Steve Russell,
early 1960s

3-3

LISP: LISt Processing

* McCarthy, MIT artificial intelligence, 1950s-60s
— Advice Taker: represent logic as data, not just

program
ﬁ Emacs: M-x doctor]

* Needed a language for:
— Symbolic computation Y{ _ _ _]
) . i i.e., not just number crunching
— Programming with logic
— Artificial intelligence
— Experimental programming

* So make one!

3-4

Scheme

* Gerald Jay Sussman and
Guy Lewis Steele (mid 1970s)

* Lexically-scoped dialect of LISP

that arose from trying to make
an “actor” language.

* Described in amazing “Lambda the Ultimate”
papers (http://library.readscheme.org/pagel.html)
— Lambda the Ultimate PL blog inspired by these:
http://lambda-the-ultimate.org
* Led to Structure and Interpretation
of Computer Programs (SICP) and
MIT 6.001 (https://mitpress.mit.edu/sicp/)

Grandchild of LISP (variant of Scheme)
— Some changes/improvements, quite similar
Developed by the PLT group

(https://racket-lang.org/people.html), the same folks who
created Drlava.

Why study Racket in CS2517?

— Clean slate, unfamiliar
Careful study of PL foundations (“PL mindset”)
Functional programming paradigm

* Emphasis on functions and their composition
* Immutable data (lists)

Beauty of minimalism
Observe design constraints/historical context

3-6

Expressions, Values, and Bindings

* Entire language: these three things

* Expressions have evaluation rules:
— How to determine the value denoted by an expression.

* For each structure we add to the language:
— What is its syntax? How is it written?

— What is its evaluation rule? How is it evaluated to a
value (expression that cannot be evaluated further)?

3-7

Values

Values are expressions that cannot be evaluated
further.

Syntax:
— Numbers: 251, 240, 301
— Booleans: #t, #£

— There are more values we will meet soon
(strings, symbols, lists, functions, ...)

Evaluation rule:
— Values evaluate to themselves.

3-8

Addition expression: syntax

Adds two numbers together.

Syntax: (+ el e2)
Every parenthesis required; none may be omitted.
el and e2 stand in for any expression.

Note recursive
structure!

Note prefix notation.

Examples:
(+ 251 240)
(+ (+ 251 240) 301)
(+ #t 251)

3-9

Addition expression: evaluation

Syntax: (+ el e2)

Note recursive
Evaluation rule: structure!

1. evaluate el to a value v1
2. evaluate e2to avalue v2
3. Return the arithmetic sum of v1 + wv2.

Addition: dynamic type checking
Syntax: (+ el e2)

Still not quite!

1. evaluate el to a value v1
2. evaluate e2to a value v2

3. If v1 and v2 are both numbers then
return the arithmeticsum of vi + v2.

4. Otherwise, a type error occurs.

Dynamic type-checking

Evaluation Assertions Formalize Evaluation

The evaluation assertion notation e | v means
“eevaluatestov”.

Our evaluation rules so far:
* value rule: v | v (where vis a number or boolean)

e addition rule:

if el | vl and e2 | v2
and v1and v2 are both numbers
and v is the sum of vl and v2
then (+ el e2) |v

Evaluation Derivation in English

An evaluation derivation is a ““proof "’ that an expression
evaluates to a value using the evaluation rules.
(+ 3 (+ 5 4)) | 12 bythe addition rule because:
* 3 | 3 bythevaluerule
(+ 5 4) | 9 bythe addition rule because:
— 5 | 5 bythevaluerule
— 4 | 4 bythevaluerule
— 5and 4 are both numbers
— 9isthe sumof 5 and 4
* 3and 9 are both numbers

* 12isthesumof 3 and 9

3-13

More Compact Derivation Notation

v | v (value rule) el|vl

: e2 | v2 "
where v is a value (addition rule)
(number, boolean, etc.) (+ el e2) |v

side conditions of rules Where v1 and v2 are numbers and

vis the sum of v1andv2.

3 | 3 (value)
5 | 5 (value)
414 (value) (addition)
(+ 54)]9
(addition)

(+ 3 (+ 5 4))] 12

3-14

Errors Modeled by “Stuck” Derivations

How to evaluate How to evaluate
(+ #t (+ 5 4))? (+ 3 (+ 5 #£))?

#t | #t (value) 3 | 3 (value)

4 | 4 (value) (addition) #f | #£ (value)
(+54)] 9

Stuck here. Can’t apply
(addition) rule because
#t is not a number

Stuck here. Can’t apply
(addition) rule because
#f is not a number

3-15

Special Cases for Addition

The addition operator + can take any number of operands.

* Fornow,treat (+ el e2 .. en)as (+ (+ el e2) .. en)
E.g,treat (+ 7 2 -5 8) as (+ (+ (+ 7 2) -5) 8)

* Treat (+ e)ase

e Treat (+) asO (orsay (+)] 0)

3-16

Other Arithmetic Operators

Similar syntax and evaluation for
- * / quotient remainder
except:

* Second argument of /, quotient, remainder
must be nonzero

* Result of / is a rational number (fraction)

* quotient and remainder take exactly two
arguments; anything else is an error.

e (- e)istreatedas (- 0 e)
(/ e)istreatedas (/ 1 e)
(*) evaluatesto 1.

(/) and (-) are errors.

3-17

Relation Operators

The following relational operators on numbers return
booleans: < <= = >= >

For example:

el | vl

e2 | v2
(less than rule)
(< ele2) |v

Where v1 and v2 are numbers and
vis #tif vl is less than v2
or #f if vl is not less than v2

Conditional (if) expressions
Syntax: (if el e2 e3)

Evaluation rule:
1. Evaluate el to avalue v1.

2. If vis not the value #£ then
return the result of evaluating e2
otherwise
return the result of evaluating e3

3-19

Conditional (if) expressions

el|vl

(if nonfalse)
(1f el e2e3) | v2

where v1 is not #f

el | #f

(if false)
(if el e2e3) | v3

e2| v2 e3 not evaluated!

e3|v3 e2 not evaluated!

Your turn

Use evaluation derivations to evaluate the
following expressions

(if (< 8 2) (+ #£ 5) (+ 3 4))
(if (+ 1 2) (-3 7) (/9 0))

(+ (if (<1 2) (* 3 4) (/ 5 6)) 7)

3-21

Expressions vs. statements

If expressions can go anywhere an expression is
expected:

(if (< 9 (- 251 240))
(* 3 (+ 4 5))
(+ 6 (*78)))

(+ 4 (* (if (< 9 (- 251 240)) 2 3) 5))

Note: this is an expression, not a statement. Do
other languages you know have conditional
expressions in addition to conditional statements?

(Many do! Java, JavaScript, Python, ...)

3-22

If expressions: careful!

Unlike earlier expressions, not all
subexpressions of if expressions are evaluated!

(if (> 251 240) 251 (/ 251 0))

(if #f (+ #t 251) 251)

Environments: Motivation

Want to be able to name values so can refer to
them later by name. E.g.;

(define x (+ 1 2))
(define y (* 4 x))
(define diff (- y x))
(define test (< x diff))

(1f test (+ (* x y) diff) 17)

3-24

Environments: Definition

* An environment is a sequence of bindings that
associate identifiers (variable names) with values.
— Concrete example:
num — 17, absoluteZero — -273, true — #t

— Abstract Example (use id to range over identifiers):
idl1 — vl id2 —» v2, ..., idn — vn

— Empty environment: @

* An environment serves as a context for evaluating
expressions that contain identifiers.

* “Second argument” to evaluation, which takes both
an expression and an environment.

3-25

Addition: evaluation with environment

Syntax: (+ el e2)

Evaluation rule:

1. evaluate el in the current environment to a value
vl

2. evaluate e2in the current environment to a value
v2

3. If vl and v2 are both numbers then
return the arithmetic sum of vi + wv2.

4. Otherwise, a type error occurs.

3-26

Variable references

Syntax: id
id: any identifier
Evaluation rule:

Look up and return the value to which idis bound in the
current environment.

* Look-up proceeds by searching from the most-recently added
bindings to the least-recently added bindings (front to back in our
representation)

Examples:
* Supposeenvisnum — 17, absoluteZero — -273, true — #t

* Inenv, num evaluatesto 17, absoluteZero evaluatesto -273,
and true evaluates to #t

3-27

define bindings

Syntax: (define id e)
define: keyword
id: any identifier
e: any expression

Evaluation rule:
1. Evaluate e to avalue v in the current
environment.

2. Produce a new environment that is identical to the
current environment, with the additional binding
id— vatthe front.

3-28

Environments: Example
env0 =Q

(define x (+ 1 2))
envl = x— 3, @ (abbreviated x— 3, can writeas x -> 3, . intext)
(define y (* 4 x))
env2=y — 12, x — 3 (mostrecent binding first)
(define diff (- y x))
env3=diff -9, y—>12, x > 3
(define test (< x diff))
env4 =test — #t,diff -9, y—> 12, x >3
(1f test (+ (* x 5) diff) 17)

Environment here is still env4
3-29

Evaluation Assertions & Rules with Environments

The evaluation assertion notation e # env | v means
“Evaluating e in environment env yields value v .

id # enVl v (varref) el# enVl vl
where id is an identifier and e2#env | v2 N
id — vis the first binding in (addition)
env forid Only thisrule actually (+ el 82) # env l v
uses env; others just
pas it along Where v1 and v2 are numbers and
vis the sum of v1andv2.
vi#env | v (value)
where v is a value el#env|vl
(number, boolean, etc.) e2#env | v2 (if nonfalse)
elttenv | #f (if el e2e3) #env | v2
e3#env]v3 (if false) where v1 is not #f

(if el e2e3) #env | v3

3-30

Example Derivation with Environments
Supposeenvd = test — #t,diff -9, y—> 12, x > 3

test #envd | #t (varref)

x #envd | 3 (varref)

S#envd | 5 (value)

(* x 5) #env4d | 15

diff #env4 | 9 (varref)

(+ (* x 5) diff)#envd | 24

(if test (+ (* x 5) diff) 17)#env4d | 24

(multiplication)

(addition)

(if nonfalse)

3-31

Racket Identifiers

Racket identifiers are case sensitive. The following are four different
identifiers: ABC, Abc, aBc, abc

Unlike most languages, Racket is very liberal with its definition of legal
identifers. Pretty much any character sequence is allowed as
identifier with the following exceptions:

— Can’t contain whitespace

— Can’t contain special characters () [1{}”," “;#|\

— Can’t have same syntax as a number

This means variable names can use (and even begin with) digits and
characters like 1 @S%"&* . -+ :<=>?/ E.g.

— myLongName, my long name, my-long-name

— 1s_atb<c*d-e?

— 76Trombones

Why are other languages less liberal with legal identifiers?

3-32

Formalizing Definitions and Environments Can’t Redefine a Variable in Racket

3-33 3-34

Other Racket Operators Racket Documentation

Racket Guide:
https://docs.racket-lang.org/guide/

Racket Reference:
https://docs.racket-lang.org/reference

3-35 3-36

