First-Class Functions in Racket

CS251 Programming
Languages
Spring 2016, Lyn Turbak

*

LS D
QRAECIP

Department of Computer Science
Wellesley College

First-Class Values

A value is first-class if it satisfies all of these properties:
* It can be named by a variable

» It can be passed as an argument to a function;

« It can be returned as the result of a function;

» It can be stored as an element in a data structure
(e.g., alist);

* It can be created in any context.

Examples from Racket: numbers, boolean, strings,
characters, lists, ... and functions!

6-2

Functions can be Named
(define dbl (A (xX) (* 2 x)))
(define avg (A (a b) (/ (+ a b) 2))))

(define pow
(A (base expt)
(if (= expt 0)
1
(* base (pow base (- expt 1))))))

Recall syntactic sugar:
(define (dbl x) (* 2 x))
(define (avg a b) (/ (+ a b) 2)))

(define (pow base expt) ..)
6-3

Functions can be Passed as Arguments

(define app-3-5 (A (f) (£ 3 5))

(define sub2 (A (x y) (- x y)))

(app-3-5 sub2)

= ((A (f) (£ 3 5)) sub2)

= ((A (f) (£ 35)) (A (xy) (- x7y)))
= ((A (xy) (-xy)) 35)

= (- 3 5)

= -2

6-4

More Functions-as-Arguments

What are the values of the following?
(app-3-5 avg)

(app-3-5 pow)

(app-3-5 (A (a b) a))

(app-3-5 +)

6-5

Functions can be Returned as
Results from Other Functions

(define make-linear-function
(A (a b) ; a and b are numbers
(A (x) (+ (* a x) b))))

(define 4x+7 (make-linear-function 4 7))
(4x+7 0)

(4x+7 1)

(4x+7 2)

(make-linear-function 6 1)
((make-linear-function 6 1) 2)

((app—-3-5 make-linear-function) 2) 6-6

More Functions-as-Returned-Values

(define flip2
(N (binop)
(A (x y) (binop y x))))

((flip2 sub2) 4 7)

(app-3-5 (flip2 sub2))

((£lip2 pow) 2 3))

(app-3-5 (flip2 pow))

(define g ((flip2 make-linear-function) 4 7))
(list (g 0) (g 1) (g 2))

((app-3-5 (flip2 make-linear-function)) 2)
6-7

Functions can be Stored in Lists

(define funs (list sub2 avg pow app-3-5
make-linear-function flip2))

((first funs) 4 7)

((fourth funs) (third funs))

((fourth funs) ((sixth funs) (third funs)))
(((fourth funs) (fifth funs)) 2)

(((fourth funs) ((sixth funs) (fifth funs))) 2)

6-8

Functions can be Created in Any Context

In some languages (e.g., C) functions can be defined only at
top-level. One function cannot be declared inside of another.

Racket functions like make-linear-functionand £1ip?2
depend crucially on the ability to create one function inside of
another function.

6-9

Python Functions are First-Class!

def sub2 (x,y): def make linear function(a, Db):
return x - y return lambda x: a*x + b
def app 3 5 (f): def flip2 (binop):
return f (3,5) return lambda x,y: binop(y,x)
In [2]: app_ 3 5(sub2)
Out[2]: -2
In [3]: app 3 5(flip2(sub2))
Out[3]: 2
In [4]: app_3 5(make linear function) (2)
Out[4]: 11
In [5]: app 3 5(flip2(make linear function)) (2)
Out[5]: 13

6-10

JavaScript Functions are First-Class!

6-11

Higher-order List Functions

A function is higher-order if it takes another
function as an input and/or returns another
function as a result. E.g. app-3-5,
make-linear-function, flip2.

We will now study higher-order list functions
that capture the recursive list processing
patterns we have seen.

6-12

Recall the List Mapping Pattern

(mapF (list vl v2 .. vn))

V1 V2 XX} vn — >0
F F F
(Fvi) (Fv2) (Fvn)
[XN] iH.

(define (mapF xs)
(if (null? xs)
null

(cons (F (first xs))

(mapF (rest xs)))))

6-13

Express Mapping via Higher-order my—-map

(define (my-map £ xs)
(1f (null? xs)
null
(cons (£ (first xs))
(my-map £ (rest xs)))))

6-14

my-map Examples

(my-map (A (x) (* 2 x)) (list 7 2 4))
(my-map first (list (list 2 3) (list 4) (list 5 6 7)))
(my-map (make-linear-function 4 7) (list 0 1 2 3))

(my-map app-3-5 (list sub2 + avg pow (flip pow)
make-linear-function))

6-15

Your turn

(map-scale n nums) returns a list that results from scaling
each number in nums by n.

> (map-scale 3 (list 7 2 4))
(21 6 12)

> (map-scale 6 (range 0 5))
(0 6 12 18 24)

6-16

Currying
A curried binary function takes one argument at a time.

(define (curry2 binop)
(A (x) (A (y) (binop x y)))

(define curried-mul (curry2 *)

> ((curried-mul 5) 4)

> (my-map (curried-mul 3) (list 1 2 3)

> (my-map ((curry2 pow) 4) (list 1 2 3))
> (my-map ((curry2 (flip2 pow)) 4) (list 1 2 3))

> (define lol (list (list 2 3) (list 4) (list 5 6 7)))
> (map ((curry2 cons) 8) lol)

> (map (2?2 8) 1lol)
‘((2 38) (48) (567 8))

{

Haskell Curry

Mapping with binary functions

(define (my-map2 binop xs ys)
(if (not (= (length xs) (length ys)))
(error "my-map2 requires same-length lists")
(if (or (null? xs) (null? ys)
null
(cons (binop (first xs) (first ys))

(my-map2 binop (rest xs) (rest ys))))))

> (my-map2 pow (list 2 3 5) (list 6 4 2))
'(64 81 25)

> (my-map2 cons (list 2 3 5) (list 6 4 2))
"((2 . 6) (3 . 4) (5. 2))

> (my-map2 cons (list 2 3 4 5) (list 6 4 2))

ERROR: my-map2 requires same-length lists

6-17 6-18
Built-in Racket map Function Recall the List Filtering Pattern
Maps over Any Number of Lists (filterP (list vl v2 .. vm))
> (map (A (x) (* x 2)) (range 1 5)) /V1 /VZ eoe vn| ——e
NERTRY g i
, , (P) (P) (p)
> (map pow (list 2 3 5) (list 6 4 2)) ~7 ~ N~
'(64 81 25) l l l
#t #t X #t
> (map (A (a b x) (+ (* a x) b)) v
(list 2 3 5) (list 6 4 2) (list 0 1 2)) vi vn| e
(6 7 12)
(define (filterP xs)
> (map pow (list 2 3 4 5) (list 6 4 2)) (if (null? xs)
ERROR: map: all lists must have same size; null
arguments were: #<procedure:pow> '(2 3 4 5) '(6 4 2) (if (P (first xs))
(cons (first xs) (filterP (rest xs)))
(filterP (rest xs))))) 520

6-19

Express Filtering via Higher-ordermy-filter

(define (my-filter pred xs)
(1f (null? xs)
null
(if (pred (first xs))
(cons (first xs)
(my-filter pred (rest xs)))
(my-filter pred (rest xs)))))

Built-in Racket filter function acts just likemy-filter

6-21

> (filter

> (filter

> (filter

> (filter

> (filter

filter Examples

(A (x) (> x 0)) (list 7 -2 -4 8 D))

(A (n) (= 0 (remainder n 2)))
(list 7 -2 -4 8 5))

(A (xs) (>= (len xs) 2))
(list (list 2 3) (list 4) (list 5 6 7))

number?
(list 17 #t 3.141 "a" (list 1 2) 3/4 5+61i))

(lambda (binop) (>= (app-3-5 binop)

(app-3-5 (flip2 binop))))
(list sub2 + * avg pow (flip2 pow)))

6-22

Recall the Recursive List Accumulation Pattern

(recf (list vl v2 .. vn))
V V2 (XY} vn — >0
\4”, nullval
(combine]
b comblne
combme

(define (rec—-accum xs)
(if (null? xs)
nullval

(combine (first xs)
(rec—-accum (rest xs)))))

Express Recursive List Accumulation via

Higher-order my-foldr

(define

(my-foldr combine nullval xs)

(1f (null? xs)
nullval

(combine (first xs)

(my-foldr combine
nullval
(rest xs)))))

6-24

my-foldr Examples
(my-foldr + 0 (list 7 2 4))
(my-foldr * 1 (list 7 2 4))
(my-foldr - 0 (list 7 2 4))
(my-foldr min +inf.0 (list 7 2 4))
(my-foldr max -inf.0 (list 7 2 4))
(my-foldr cons (list 8) (list 7 2 4))

(my-foldr append null
(list (list 2 3) (list 4) (list 5 6 7)))

6-25

More my-foldr Examples

;7 This doesn’t work. Why not?
> (my-foldr and #t (list #t #t #t))

> (my-foldr (A (a b) (and a b)) #t (list #t #t #t))
> (my-foldr (A (a b) (and a b)) #t (list #t #f #t))
> (my-foldr (A (a b) (or a b)) #f (list #t #f #t))

> (my-foldr (A (a b) (or a b)) #£f (list #f #f #£f))

6-26

Mapping & Filtering in terms of my-foldr

(define (my-map f xs)
(my-foldr 27272

277

Xs))

(define (my-filter pred xs)
(my-foldr 2727

Earars

Xs))

6-27

Built-in Racket foldr Function
Folds over Any Number of Lists

> (foldr + 0 (list 7 2 4))

13

> (foldr (lambda (a b sum) (+ (* a b) sum))
0
(list 2 3 4)
(list 5 6 7))

56

> (foldr (lambda (a b sum) (+ (* a b) sum))

(
0
(list 1 2 3 4)
(list 5 6 7))

ERROR: foldr: given list does not have the same size

as the first list: '(5 6 7)

6-28

Compositional Programming

(sum-squares-of-multiples-of-3-or-5-up-to hi)

6-29

Summary (and Preview!)

Data and procedures and the values they amass,
Higher-order functions to combine and mix and match,
Objects with their local state, the messages they pass,

A property, a package, a control point for a catch —

In the Lambda Order they are all first-class.

One Thing to name them all, One Thing to define them,
One Thing to place them in environments and bind them,
In the Lambda Order they are all first-class.

Abstract for the Revised4 Report on the Algorithmic Language Scheme
(R4RS), MIT Artificial Intelligence Lab Memo 848b, November 1991

Emblem for the Grand Recursive Order
of the Knights of the Lambda Calculus

6-30

