Functions in Racket

CS251 Programming
Languages
Spring 2016, Lyn Turbak

Department of Computer Science
Wellesley College

Racket Functions

Functions: most important building block in Racket (and 251)
« Functions/procedures/methods/subroutines abstract over computations

« Like Java methods, Python functions have arguments and result

« But noclasses, this, return, efc.

Examples:
(define
(define
(define
(define
(define

(define

dbl (lambda (x) (* x 2)))
quad (lambda (x) (dbl (dbl x))))

avg (lambda (a b) (/ (+ a b) 2)))

sqr (lambda (n) (* n n)))
n 10)
small? (lambda (num) (<= num n)))

4-2

lambda denotes a anonymous function

Syntax: (lambda (i1idl..1idn) e)

— lambda: keyword that introduces an anonymous function
(the function itself has no name, but you’re welcome to name it using
define)

— 1d1l ... idn: any identifiers, known as the parameters of the function.

— e:any expression, known as the body of the function.
It typically (but not always) uses the function parameters.

Evaluation rule:

A lambda expression is just a value (like a number or boolean),
so a lambda expression evaluates to itself!

 What about the function body expression? That’s not evaluated until
later, when the function is called.

4-3

Function calls (applications)

To use a function, you call it on arguments (apply it to arguments).
E.g. in Racket: (dbl 3), (avg 8 12), (small? 17)

Syntax: (e0 el .. en)

A function call expression has no keyword. A function call because it’s the
only parenthesized expression that doesn’t begin with a keyword.

e0: any expression, known as the rator of the function call
(i.e., the function position).

el .. en:any expressions, known as the rands of the function call
(i.e., the argument positions).

Evaluation rule:

1.
2.
3.

Evaluate e0 .. eninthe current environment to values vO0 ... vn.
If vO is not a 1ambda expression, raise an error.

If vO is a 1ambda expression, returned the result of applying it to the

argument values v7 ... vn (see following slides). »

Function application

What does it mean to apply a function value (1ambda expression)
to argument values? E.g.

((lambda (x) (* x 2)) 3)
((lambda (a b) (/ (+ a b) 2) 8 12)

We will explain function application using two models:

1. The substitution model: substitute the argument values for the
parameter names in the function body.

2. The environment model: extend the environment of the
function with bindings of the parameter names to the
argument values.

4-5

Function application: substitution model

Example 1:
((lambda (x) (* x 2)) 3)
Substitute 3 for xin (* x 2) and evaluate the result:

(* 3 2)] 6 (environment doesn’t matter in this case)

Example 2:
((lambda (a b) (/ (+ a b) 2) 8 12)
Substitute 3 for xin (* x 2) and evaluate the result:

(/ (+ 8 12) 2) | 10 (environment doesn’t matter in this case)

4-6

Substitution notation

We will use the notation
e[vl, ..., vn/id1, ..., idn]

to indicate the expression that results from substituting the values
vl, ..., vn for the identifiers id1, ..., idn in the expression e.

For example:
e (* x 2)[3/x]standsfor (* 3 2)
e (/ (+ a b) 2)[8,12/a,b]standsfor (/ (+ 8 12) 2)

e (1f (K x z) (+ (* x x) (* v v)) (/ x v)) [3,4/%Y]
stands for (if (< 3 z) (+ (* 3 3) (* 4 4)) (/ 3 4))

It turns out that there are some very tricky aspects to doing

substitution correctly. We’ll talk about these when we encounter

them. 4

Function call rule: substitution model

eO#env | (lambda (idl...idn) e_body)
el#env | vl

en #env | vn

e_body[vl ...vn/id1 ... idn] # env | v_body

(e0 el ... en) #env | v_body

(function call)

Note: no need for function application frames

like those you’ve seen in Python, Java, C, ...

4-8

Substitution model derivation

Suppose env2 =dbl — (lambda (x) (* x 2)),
quad — (lambda (x) (dbl (dbl x)))

quad#env?2 | (lambda (x) (dbl (dbl x)))
3#env2 | 3
dbl #env2 | (lambda (x) (* x 2))

dbl #env2 | (lambda (x) (* x 2))

3#Henv2 | 3

(* 3 2) #env2 | 6 (multiplication rule, subparts omitted)

(function call)
(dbl 3)#env2| 6

(* 6 2) #env2 | 12 (multiplication rule, subparts omitted)
(function call)

(dbl (dbl 3))#env2 | 12
(quad 3)#env2 | 12

(function call)

4-9

Substitution model derivation: your turn

Supposeenvd=n — 10,
small? — (lambda (num) (<= num n))
sqr — (lambda (n) (* n n))

Give an evaluation derivation for (small? (sgr n))#env3

4-10

Stepping back: name issues

Do the particular choices of function parameter names matter?

Is there any confusion caused by the fact that db1 and quad both
use x as a parameter?

Are there any parameter names that we can’t change x to in quad?

In (small? (sgr n)), isthere any confusion between the global
parameter name n and parameter n in sgr?

Is there any parameter name we can’t use instead of num in small?

4-11

Small-step vs. big-step semantics

The evaluation derivations we’ve seen so far are called a
big-step semantics because the derivation e # env2 | v explains
the evaluation of e to v as one “big step” justified by the
evaluation of its subexpressions.

An alternative way to express evaluation is a small-step semantics
in which an expression is simplified to a value in a sequence of
steps that simplifies subexpressions. You do this all the time when
simplifying math expressions, and we can do it in Racket, too. E.g;

(- (* (+ 2 3) 9 (/ 18 6))
= (- (* 5 9) (/ 18 6))

= (- 45 (/ 18 6))

= (- 45 3)

4-12

Small-step semantics: intuition

Scan left to right to find the first redex (nonvalue subexpression
that can be reduced to a value) and reduce it:

(= (* [(+ 2 3)] 9) (/ 18 6))

= (= | (* 5 9) (/ 18 06))
= (- 45| (/ 18 q)))

=| (- 45 3)

= 472

4-13

Small-step semantics: reduction rules

There are a small number of reduction rules for Racket. These
specify the redexes of the language and how to reduce them.

The rules often require certain subparts of a redex to be values
in order to be applicable.

id = v, where id - v in the current environment™* (varref)
(+ viv2)=>v,wherevisthe sumof vl and v2 (addition)
There are similar rules for other arithmetic operators
(if #t e _then e _else) = e _then (if true)
(if #f e _then e _else) = e _false (if false)

((lambda (id1 ...idn) e _body) v1 ...vn)
= e_body[v1l ...vn/id1l ... idn] (function call)

* In a more formal approach, the notation would make the environment explicit.
E.g.,e#env =v 4-14

Small-step semantics: conditional example

(+ (if [(< 1 2) (* 3 4) (/ 5 6)) 7)
= (+| (Lf #t (* 3 4) (/ 5 6)) 7)
= (+| (* 3 4) 7)
= | (+ 12 7)
—

19

4-15

Small-step semantics:
errors as stuck expressions

Similar to big-step semantics, we model errors (dynamic type
errors, divide by zero, etc.) in small-step semantics as expressions
in which the evaluation process is stuck because no reduction rule
is matched. For example

(— (* [(+ 2 3) #t) (/ 18 6))
= (= (* 5 #t) (/ 18 06))

/ |[(+ 3 4) (= 55))) 89)
= (1if (= 2 (/ 7|(- 5 5))) 8 9)
2 (/7 0)) 8 9)

4-16

Small-step semantics: function example

(quad | 3)
= [((lambda (x) (dbl (dbl x))) 3)
= (dbl| (dbl 3))
= ((lambda (x) (* x 2)) (dbl| 3))
= ((lambda (x) (* x 2))

((lambda (x) (* x 2)) 3))
= ((lambda (x) (* x 2))|(* 3 2))
= |((lambda (x) (* x 2)) 0)
= |[(* 6 2)
= 12

4-17

Evaluation Contexts

Although we will not do so here, it is possible to formalize exactly
how to find the next redex in an expression using so-called
evaluation contexts.

For example, in Racket, we never try to reduce an expression
within the body of a 1ambda.

((lambda (x) (+ (* 4 5) X)) |[(+ 1 2))
1

not this this is the
first redex

We’'ll see later in the course that other choices are possible
(and sensible).

4-18

Small-step semantics: your turn

Use small-step semantics to evaluate (small? (sgr n))

Assume this is evaluated with respect to the same global
environment used earlier.

4-19

Recursion

Recursion works as expected in Racket using the substitution model
(both in big-step and small-step semantics).

There is no need for any special rules involving recursion!
The existing rules for definitions, functions, and conditionals explain

everything.

(define pow
(lambda (base exp)
(1f (= exp 0)
1
(* base (pow base (- exp 1))))))

What is the value of (pow 5 2)7?

4-20

Recursion: your turn

Define and test the following recursive functions in Racket:
(fact n):Return the factorial of the nonnegative integer n
(fib n): Return the nth Fibonacci number

(sum-between lo hi):returnthe sum of the integers
between integers 10 and hi (inclusive)

4-21

Syntactic sugar: function definitions

Syntactic sugar. simpler syntax for common pattern.
— Implemented via textual translation to existing features.
— i.e., not a new feature.

Example: Alternative function definition syntax in Racket:
(define (id_funName idl ..idn) e body)
desugars to B
(define id_funName (lambda (idl ..idn) e body))

(define (dbl x) (* x 2))
(define (quad x) (dbl (dbl x)))

(define (pow base exp)
(1f (< exp 1)
1

(* base (pow base (- exp 1)))))
4-22

Racket Operators are Actually Functions!

Surprise! In Racket, operations like (+ el e2),
(< el e2)are,and (not e)arereallyjust

function applications!

There is an initial top-level environment that
contains bindings like:

+ — addition function,

- — Subtraction function,

* — multiplication function,

< — less-than function,

not — boolean negation function,

4-23

Summary So Far

Racket declarations:
e definitions: (define id e)

Racket expressions:
 conditionals: (if e_test e_then e_else)
 functionvalues: (lambda (id1...idn) e_body)

* Function calls: (e_rator e_rand1 ... e_randn)
Note: arithmetic and relation operations are just function calls

What about?

« Assignment? Don'’t need it!

« Loops? Don’t need them! Use tail recursion, coming soon.

« Data structures? Glue together two values with cons (next time)

4-24

