Functions in Racket

CS251 Programming
Languages
Spring 2016, Lyn Turbak

*
*

\21\)

QRAECIP

5 s
TVyg S 48
AGEs

l 2,
C,

Department of Computer Science
Wellesley College

3\)
EA

Racket Functions

Functions: most important building block in Racket (and 251)
» Functions/procedures/methods/subroutines abstract over computations
* Like Java methods, Python functions have arguments and result

« Butnoclasses, this, return, etc.

Examples:
(define dbl (lambda (x) (* x 2)))
(define quad (lambda (x) (dbl (dbl x))))
(define avg (lambda (a b) (/ (+ a b) 2)))
(define sgr (lambda (n) (* n n)))
(define n 10)

(define small? (lambda (num) (<= num n)))
42

lambda denotes a anonymous function

Syntax: (lambda (idl..idn) e)
— lambda: keyword that introduces an anonymous function
(the function itself has no name, but you’re welcome to name it using
define)
— 1id1 ... idn: any identifiers, known as the parameters of the function.

— e:any expression, known as the body of the function.
It typically (but not always) uses the function parameters.

Evaluation rule:

* A lambda expression is just a value (like a number or boolean),
so a lambda expression evaluates to itself!

* What about the function body expression? That’s not evaluated until
later, when the function is called.

43

Function calls (applications)

To use a function, you call it on arguments (apply it to arguments).
E.g. in Racket: (dbl 3), (avg 8 12), (small? 17)

Syntax: (e0 el .. en)

— A function call expression has no keyword. A function call because it’s the
only parenthesized expression that doesn’t begin with a keyword.

— e0: any expression, known as the rator of the function call
(i.e., the function position).

— el .. en:any expressions, known as the rands of the function call
(i.e., the argument positions).

Evaluation rule:
1. Evaluate e0 .. eninthe current environment to values vO0 ... vn.
2. If vOis nota lambda expression, raise an error.

3. Ifv0isa lambda expression, returned the result of applying it to the

argument values v7 ... vn (see following slides). s

Function application

What does it mean to apply a function value (1ambda expression)
to argument values? E.g.

((lambda (x) (* x 2)) 3)
((lambda (a b) (/ (+ a b) 2) 8 12)

We will explain function application using two models:

1. The substitution model: substitute the argument values for the
parameter names in the function body.

2. The environment model: extend the environment of the
function with bindings of the parameter names to the
argument values.

45

Function application: substitution model

Example 1:
((lambda (x) (* x 2)) 3)
Substitute 3 for x in (* x 2) and evaluate the result:
(* 3 2) | 6 (environmentdoesn’t matter in this case)
Example 2:
((lambda (a b) (/ (+ a b) 2) 8 12)
Substitute 3 for x in (* x 2) and evaluate the result:

(/ (+ 8 12) 2) | 10 (environment doesn’t matter in this case)

4-6

Substitution notation

We will use the notation

el[vl, .., vn/idl, ..., idn]
to indicate the expression that results from substituting the values
vi, ..., vn for the identifiers id1, ..., idn in the expression e.

For example:

e (* x 2)[3/x]standsfor (* 3 2)

* (/ (+ a b) 2)[8,12/ab]standsfor (/ (+ 8 12) 2)
c (if (K x2z) (+ (*xx) (*yy) (/xy)) [84/xYy]

standsfor (if (< 3 z) (+ (* 3 3) (* 4 4)) (/ 3 4))

It turns out that there are some very tricky aspects to doing
substitution correctly. We'll talk about these when we encounter

them. a7

Function call rule: substitution model

eO#env | (lambda (id1..idn) e_body)
el#tenv vl

en#env | vn

e_body|[v1 ... vn/id1 ... idn] # env | v_body
(e0 et .. en) #env | v_body

(function call)

Note: no need for function application frames
like those you’ve seen in Python, Java, C, ...

48

Substitution model derivation

Suppose env2 =dbl — (lambda (x) (* x 2)),
quad — (lambda (x) (dbl (dbl x)))

quad#env2 | (lambda (x) (dbl (dbl x)))
3#env2 | 3
dbl #env2 | (lambda (x) (* x 2))
dbl #env2 | (lambda (x) (* x 2))
3#env2 | 3

(* 3 2) #tenv2 | 6 (multiplication rule, subparts omitted)
(function call)

(dbl 3)#env2 | 6

(* 6 2) #tenv2 | 12 (multiplication rule, subparts omitted)
(function call)

(dbl (dbl 3))#env2 | 12
(quad 3)#env2 | 12

(function call)

49

Substitution model derivation: your turn

Supposeenv3d=n — 10,
small? — (lambda (num) (<= num n))
sqr — (lambda (n) (* n n))

Give an evaluation derivation for (small? (sqr n))#env3

4-10

Stepping back: name issues

Do the particular choices of function parameter names matter?

Is there any confusion caused by the fact that db1 and quad both
use x as a parameter?

Are there any parameter names that we can’t change x to in quad?

In (small? (sgqr n)),isthere any confusion between the global
parameter name n and parameter n in sqr?

Is there any parameter name we can’t use instead of num in small?

4-11

Small-step vs. big-step semantics

The evaluation derivations we’ve seen so far are called a
big-step semantics because the derivation e # env2 | v explains
the evaluation of e to v as one “big step” justified by the
evaluation of its subexpressions.

An alternative way to express evaluation is a small-step semantics
in which an expression is simplified to a value in a sequence of

steps that simplifies subexpressions. You do this all the time when
simplifying math expressions, and we can do it in Racket, too. E.g;

(

(* (+ 2 3) 9) (/18 6))

= (- (* 59) (/ 18 6))
= (- 45 (/ 18 6))

= (- 45 3)

= 42

4-12

Small-step semantics: intuition

Scan left to right to find the first redex (nonvalue subexpression
that can be reduced to a value) and reduce it:

(- (* 9) (/ 18 6))

= (-|(* 5 9) (/ 18 6))
= (- 45[(/ 18 6))
= (- 45 3]

= 42

4-13

Small-step semantics: reduction rules

There are a small number of reduction rules for Racket. These
specify the redexes of the language and how to reduce them.

The rules often require certain subparts of a redex to be values
in order to be applicable.

id = v, whereid - v in the current environment* (varref)
(+ viv2)= v, wherevisthe sumof vl andv2 (addition)
There are similar rules for other arithmetic operators
(if #t e_then e_else) = e_then (if true)
(if #f e_then e_else) = e_false (if false)

((lambda (id1 ...idn) e_body) v1 ...vn)
= e_body[v1 ...vn/id1 ... idn] (function call)

* In a more formal approach, the notation would make the environment explicit.

Eg.,e#env =v 414

Small-step semantics: conditional example

(+ (if (<1 2) (* 3 4) (/ 56)) 7)
= (+’(if #t (* 3 4) (/ 5 6)} 7)
= (+(*34) 7)

=[(+ 12 7)

= 19

4-15

Small-step semantics:
errors as stuck expressions

Similar to big-step semantics, we model errors (dynamic type
errors, divide by zero, etc.) in small-step semantics as expressions
in which the evaluation process is stuck because no reduction rule
is matched. For example

(= (* |[(+ 2 3) #t) (/ 18 06))
= (- (* 5 #t) (/ 18 6))

(if (=2 (/ |[(+ 3 4) (-55))) 89)

= (if (=2 (/ 7[(- 5 5])) 8 9)
= (if (=2 (/7 0)) 8 9)

4-16

Small-step semantics: function example

(quad]3)

= |((lambda (x) (dbl (dbl x))) 3)
(db1] (dbl 3))

((lambda (x) (* x 2)) (dbl]3))

((lambda (x) (* x 2))
((lambda (x) (* x 2)) 3))

R

= ((lambda (x) (* x 2))|(* 3 2)])
= |((lambda (x) (* x 2)) 6)

= ((* 6 2)

= 12

417

Evaluation Contexts

Although we will not do so here, it is possible to formalize exactly
how to find the next redex in an expression using so-called
evaluation contexts.

For example, in Racket, we never try to reduce an expression
within the body of a 1ambda.

((lambda (x) (+ (* 4 5) x)) [(+ 1 2)))
?

not this this is the
first redex

We'll see later in the course that other choices are possible
(and sensible).

4-18

Small-step semantics: your turn

Use small-step semantics to evaluate (small? (sgr n))

Assume this is evaluated with respect to the same global
environment used earlier.

4-19

Recursion

Recursion works as expected in Racket using the substitution model
(both in big-step and small-step semantics).

There is no need for any special rules involving recursion!
The existing rules for definitions, functions, and conditionals explain
everything.

(define pow
(lambda (base exp)
(if (= exp 0)
1
(* base (pow base (- exp 1))))))

What is the value of (pow 5 2)7?

4-20

Recursion: your turn
Define and test the following recursive functions in Racket:
(fact n):Return the factorial of the nonnegative integer n
(fib n):Return the nth Fibonacci number

(sum-between lo hi):returnthe sum of the integers
between integers 10 and hi (inclusive)

421

Mty syny

Syntactic sugar: function definitions

“SVhtay o S 1
MUY gy “l’#ﬂ%\\
Syntactic sugar. simpler syntax for common pattern.

— Implemented via textual translation to existing features.

— i.e., not a new feature.
Example: Alternative function definition syntax in Racket:
(define (id_funName idl ...idn) e_body)
desugars to
(define id_funName (lambda (id1 ..idn) e body))

(define (dbl x) (* x 2))
(define (quad x) (dbl (dbl x)))

(define (pow base exp)
(if (< exp 1)
1

(* base (pow base (- exp 1)))))
4-22

Racket Operators are Actually Functions!

Surprise! In Racket, operations like (+ el e2),
(< el e2)are,and (not e)are really just
function applications!

There is an initial top-level environment that
contains bindings like:

+ — addition function,

- — Subtraction function,

* — multiplication function,

< — less-than function,

not — boolean negation function,

4-23

Summary So Far

Racket declarations:
e definitions: (define id e)

Racket expressions:
e conditionals: (1f e_test e_then e_else)
* function values: (lambda (id1...idn) e_body)

* Function calls: (e_rator e_rand1 ... e_randn)
Note: arithmetic and relation operations are just function calls

What about?

* Assignment? Don’t need it!

* Loops? Don’t need them! Use tail recursion, coming soon.

» Data structures? Glue together two values with cons (next time)

424

