Local Naming and Scope

These slides borrow heavily from Ben Wood’s Fall ‘15 slides, some of which are
in turn based on Dan Grossman’s material from the University of Washington.

CS251 Programming

Languages
Spring 2016, Lyn Turbak

*

LS D
QRAECIP

Department of Computer Science

Motivation for local bindings

We want local bindings = a way to name things locally in
functions and other expressions.

Why?
— For style and convenience
— Avoiding duplicate computations
— A big but natural idea: nested function bindings
— Improving algorithmic efficiency (not “just a little faster”)

Wellesley College
9-2
let expressions Example
2 questions: 2 new keyword! > (let {[a (+ 1 2)] [b (* 3 4)]} (list a b))
'(3 12)
* Syntax: (let {[idl el] ... [idn en]} e body) || e
— Each xi is any variable, and e_body and each ei are .
any expressions Pretty printed form
> (let {[a (+ 1 2)]
« Evaluation: (b (* 3 4)1}
— Evaluate each ei to vi in the current dynamic (list a b))
environment. "3 12)
— Evaluate e body[vi,..vn/idl,..,idn]inthecurrent | | e
dynamic environment.
Result of whole let expression is result of evaluating e_body.
9-4

9-3

Parens vs. Braces vs. Brackets

As matched pairs, they are interchangeable.
Differences can be used to enhance readability.

> (let {[a (+ 1 2)] [b (* 3 4)]1} (list a b))
'(3 12)

> (let ((a (+ 1 2)) (b (* 3 4))) (list a b))
'(3 12)

> (let [[a (+ 1 2)] [b (* 3 4)]1] (list a b))
'(3 12)

> (let [{a (+ 1 2)} (b (* 3 4))] (list a b))
'(3 12)

9-5

let is an expression

A let-expression is just an expression, so we can use it
anywhere an expression can go.

Silly example:

(+ (let {[x 1]} =x)

(let {[y 2]
[z 4]}
(- zy)))

9-6

let is just syntactic sugar!

(let {[idl el] .. [idn en]} e body)
desugars to

((lambda (idl .. idn) e body) el .. en)
Example:
(let {[a (+ 1 2)] [b (* 3 4)1} (list a b))
desugars to

((lambda (a b) (list a b)) (+ 1 2) (* 3 4))

9-7

Scope and Lexical Contours

scope = area of program where declared name can be used.

Show scope in Racket via lexical contours in scope diagrams.

(define add-n | (A ((x) (+ n x))|)

(define add-2n ((A (y) (add-n (add-n y))))

(define n 17)

(define £ (A (z)

(let {[c [(add-2n z)]
[di(- 2z 3) 1}
(+z (*cd)))))

9-8

Declarations vs. References

A declaration introduces an identifier (variable) into a scope.

A reference is a use of an identifier (variable) within a scope.

We can box declarations, circle references, and draw a line
from each reference to its declaration. Dr. Racket does this
for us (except it puts ovals around both declarations and

references).

An identifier (variable) reference is unbound if there is no
declaration to which it refers.

9-9

Scope and Define Sugar

(define (add-n| x)

(+ n x)|)

(define (add-2n y)

(add-n (add-n y)) |)

(define n 17)

(define (f |z)

(let {[c [(add-2n z)]
[di(- 2z 3) 1}
(+z (*cd)))))

9-10

Shadowing

An inner declaration of a name shadows uses of outer declarations

of the same name.

(let {[x 2]}

(- (let {[x|(* x x)]}

(+ % 3)) Can’t refer to

outer x here.

X))

9-11

Alpha-renaming

Can consistently rename identifiers as long as it doesn’t change the
connections between uses and declarations.

(define (f w z)
(* w
(let {[c (add-2n z)]
[d (- z 3)1}
(+z (* cd)))))

OK

»

(define (f c d)
(* c
(let {[b (add-2n d)]
[e (-d 3)]}
(+d (*bc))))))

P norox

(define (f x y)
(* x
(let {[x (add-2n y)]
[y (-dywl}
(+y (*x¥))))))

9-12

Scope, Free Variables, and Higher-order Functions
In a lexical contour, an identifier is a free variable if it is not
defined by a declaration within that contour.

Scope diagrams are especially helpful for understanding the
meaning of free variables in higher order functions.

(define (make-subm)

A (x) (-x(n))))

(define (map-scale W

(map (A (num) (*(factor)num))| ns)|)

9-13

Your Turn: Compare the Following

(let {[a 3] [b 12]}
(list a b
(let {[a (- b a)]
[b (* a a)]}
(1list a b))))

(let {[a 3] [b 12]}
(list a b
(let {[a (- b a)l}
(let {[b (* a a)l}
(list a b)))))

9-14
New sugar: let ™ and and or sugar
(and) desugarsto #t
(let* {} e_body) desugarsto e_body (and el) desugarsto el
(and el ..) desugarsto (if el (and ..) #£f)
(let* {[idl el] ..} e body)
desugarsto (let {[idl el]} (or) desugarsto #f£
(let* {..} e_body)) (or el) desugarsto el
(or el ..) desugarsto
Example: (let ((idl el))
1 31 [b 12 (if el el (or .))
¢ Tl:iiiaa 1]) [1} where id1 must be fresh —i.e., not used elsewhere in
(let* {[a (- b a)] the program.
[b (* a a)]} * Why is let needed in or desugaring but not and?
(list a b))))) * Why must 1d1 be fresh?
9-15

9-16

Avoid repeated recursion

Consider this code and the recursive calls it makes

— Don’t worry about calls to first, rest, and null?
because they do a small constant amount of work

(define (bad-maxlist xs)
(if (null? xs)
-inf.0
(if (> (first xs) (bad-maxlist (rest xs)))
(first xs)
(bad-maxlist (rest xs)))))

9-17

(if (> (first xs)
(bad-maxlist (rest xs)))

Fast vs. unusable (first xs)

(bad-maxlist (rest xs)))

(bad-maxlist (range 50 0 -1))

bm 50,.. > bm 49, .. > bm 48, .. > > > bm 1

(bad-maxlist (range 1 51))

bm 1,. ™ bm 2,. i: bm 3,.. T I X bm 50
bm 3,. JF I3
. 2%
bm 2,. > times
\\\ bm 3,.. :;r :;r t;:
bm 3,.. :;r :;r t;:
bm 50
9-18

Some calculations

Suppose one bad-maxlist call’s if logic and calls to null?,
first?, rest take 107 seconds total
— Then (bad-maxlist (list 50 49 .. 1)) takes 50 x 107 sec

— And (bad-maxlist (list 1 2 .. 50)) takes
(1+2+22 *+23+ +249)x107
=(249-1)x107=1.12x 108 sec

» over 3.5 years
e (bad-maxlist (list 1 2 .. 55)) takes over 1 century
 Buying a faster computer won'’t help much ©

The key is not to do repeated work that might do repeated work that
might do...

— Saving recursive results in local bindings is essential...

9-19

Efficient maxlist

(define (good-maxlist xs)
(if (null? xs)
-inf.0
(let {[rest-max (good-maxlist (rest xs))]}
(if (> (first xs) rest-max)
(first xs)
rest-max))))

gm 1

gm 50

9-20

Transforming good-maxlist

(define (good-maxlist xs)
(if (null? xs)
-inf.0
(let {[rest-max (good-maxlist (rest xs))]}
(if (> (first xs) rest-max)
(first xs)
rest-max))))

(define (good-maxlist xs)
(if (null? xs)
-inf.0
((A (fst rest-max) ; name fst too!
(if (> fst rest-max) fst rest-max))
(first xs)
(good-maxlist (rest xs)))))

(define (good-maxlist xs)
(if (null? xs)
-inf.0
(max (first xs) (good-maxlist (rest xs)))))

(define (max a b)
(if (> a b) a b))

9-21

Local function bindings with 1et

+ Silly example:

(define (quad x)
(let ([square (lambda (x) (* x x))])
(square (square x))))

» Private helper functions bound locally = good style.
» But can’t use let for local recursion. Why not?

(define (up-to-broken x)
(let {[between (lambda (from to)
(if (> from to)
null
(cons from

(between (+ from 1) to))))]1}
(between 1 x)))

9-22

letrec to the rescue!

(define (up-to x)
(letrec {[between (lambda (from to)
(if (> from to)
null
(cons from

(between (+ from 1) to))))]}
(between 1 x)))

In (let {[idl el] ... [idn en]} e body),
el ...en arein the scope of id1 ... idn.

9-23

Better

(define (up- to—better
(letrec {[up-to-x (Iambda)
(if (> fro
null

(cons from

(up-to-x (+ from 1)))))1}
(up-to-x 1)))

e Functions can use bindings in the environment where they are
defined:

— Bindings from “outer” environments
¢ Such as parameters to the outer function
— Earlier bindings in the let-expression
e Unnecessary parameters are usually bad style
— Like to in previous example

9-24

Mutual Recursion with letrec

(define (test-even-odd num)
(letrec {[even? (A (x)

(if (= x 0)
#t
(not (odd? (- x 1)))))]1

[odd? (A (y)

(if (= y 0)

#£f

(not (even? (- y 1)))))11}
(list (even? num) (odd? num))))

> (test-even-odd 17)
' (#t #£)

9-25

Local definitions are sugar for letrec

(define (up-to-alt2 x)
(define (up-to-x from)
(if (> from x)
null
(cons from

(up-to-x (+ from 1)))))
(up-to-x 1))

(define (test-even-odd-alt num)
(define (even? Xx)
(if (= x 0) #t (not (odd? (- x 1)))))
(define (odd? y)
(if (= y 0) #£ (not (even? (- y 1)))))
(list (even? num) (odd? num)))

9-26

Nested functions: style

» Good style to define helper functions inside the functions they
help if they are:

— Unlikely to be useful elsewhere

— Likely to be misused if available elsewhere

— Likely to be changed or removed later

A fundamental trade-off in code design: reusing code saves

effort and avoids bugs, but makes the reused code harder to
change later

9-27

Local Scope in other languages

What support is there for local scope in Python?
JavaScript?

Java?

You will explore this in PS5!

9-28

Pragmatics: Programming Language Layers

user libraries

Where We Stand

Kernel Sugar Built-in
library functions

User-defined
library functions

