Metaprogramming

These slides borrow heavily from Ben Wood’s Fall ‘15 slides.

CS251 Programming Languages
Spring 2016, Lyn Turbak

Department of Computer Science
Wellesley College

Lisp/Racket and Implementation (2)

Interpretation, Translation, and everything in between
Programs as Data
If time: Implementing Racket in Racket

- hands-on

- how Lisp was first implemented

How to implement a programming language

Interpretation

An interpreter written in the implementation language reads
a program written in the source language and evaluates it.

Translation (a.k.a. compilation)

An translator (a.k.a. compiler) written in the implementation
language reads a program written in the source language and
translates it to an equivalent program in the

But now we need implementations of:
implementation language

How to implement a programming language

Can describe by deriving a “proof” of the implementation
using these inference rules:

Interpreter Rule
P-in-L program L interpreter machine
~ Pmachine
Translator Rule

P-in-S program S-to-T translator machine

P-in-T program

Implementation Derivation Example

Prove how to implement a "251 web page machine" using:
* 251-web-page-in-HTML program (a web page written in HTML)
* HTML-interpreter-in-C program (a web browser written in C)
* (C-to-x86-translator-in-x86 program (a C compiler written in x86)

* x86 interpreter machine (an x86 computer)

No peaking ahead!

Implementation Derivation Example Solution

C-to-x86-compiler-in-x86 program x86 computer o

HTML-interpreter-in-C program (
C-to-x86 compiler machine

HTML-interpreter-in-x86 program

x86 computer

251-web-page-in-HTML program)
HTML interpreter machine 0
251 web page machine
We can omit “program” and “machine”:
) . C-to-x86 compiler in x86 x86 computer
HTML interpreter in C (1
C-to-x86 compiler
(T) x86 computer
251 , HTML interpreter in x86
web page in HTML : ()
HTML interpreter 0

251 web page machine

Implementation Derivation Are Trees

And so we can represent them as nested structures, like nested bulleted lists:

e 251 web page machine (l)
o 251-web-page-in-HTML program
o HTML interpreter machine ()
= HTML-interpreter-in-x86 program (T)
« HTML-interpreter-in-C program
= C-to-x86 compiler machine ()
» C-to-x86-compiler-in-x86 program
= X86 computer
= X86 computer

Metacircularity and Bootstrapping

Many examples:
Lisp in Lisp / Racket in Racket: eval
Python in Python: PyPy
Java in Java: Jikes RVM, Maxine VM

C-to-x86 compiler in C

How can this be possible?

Key insights to bootstrapping:

The first implementation of a language cannot be in
itself, but must be in some other language.

Once you have one implementation of a language, you
can implement it in itself.

Metacircularity Example 1

Suppose you are given:
Racket-in-SML interpreter
SML machine
Racket-in-Racket interpreter
How do you run the Racket-in-Racket interpreter?

Metacircularity Example 2

Suppose you are given:
* (C-to-x86-translator-in-x86 program (a C compiler written in x86)
* x86 interpreter machine (an x86 computer)
* (C-to-x86-translator-in-C

How do you compile the C-to-x86-translator-in-C ?

10

Compiler

C Source

Program
.

if (x == 0) {
X =x + 1;

}

x86 Target
Program

-

Data —

"I C Compiler

cmp (1000),

x86 Target

"l Program

bne L

add (1000),
L:

x86 computer > Output

$O
S1

11

Typical Compiler

Source
Program

Analysis

Synthesis

Target
"| Program
12

Interpreters

Source
Program

-

Data ™

Interpreter =
virtual machine

— Output

13

Interpreters vs Compilers

Interpreters
No work ahead of time
Incremental
maybe inefficient

Compilers
All work ahead of time
See whole program (or more of program)
Time and resources for analysis and optimization

14

Compilers... whose output is interpreted

Source
Program "| Java Compiler
-
Target
Program Java
- Virtual
Machine

Data —

Doesn’t this look familiar?

Target
"l Program

— Output

15

Java Compiler

Source

Program "| Java Compiler
-

if (x == 0) {
X =x + 1;

}

(compare compiled C to compiled Java)

Target
"l Program

load O
ifne L
load O
inc
store 0
L:

16

Interpreters... that use compilers.

Source

Program
-

Data

| Compiler

Target
Program

-

Virtual
Machine

> Output

17

JIT Compilers and Optimization

Source
Program
* HotSpot JVM
Just In Time e Jikes RVM
Compiler CoTpller SpiderMonkey
* V38
| * Transmeta
Target) Performance °
—>Program ~ | Monitor
. — > Output
Virtual
Machine

Data — |

18

Virtual Machine Model

High-Level Language Program

Ahead-of-time
compiler

Bytecode
compiler
compile time

: Virtual Machine Language
run time

Virtual machine
(interpreter)

Native Machine Language

Remember: language != implementation

Easy to confuse "the way this language is usually
implemented"” or "the implementation | use" with "the
language itself.”

Java and Racket can be compiled to x86
C can be interpreted in Racket
x86 can be compiled to JavaScript

Can we compile C/C++ to Javascript?
http://kripken.github.io/emscripten-site/

20

Next Topic: Metaprogramming in SML

PostFix in SML (see postfix.sml)

A sequences of expression languages implemented in
SML that look closer and closer to Racket:

° Intex

* Bindex

* Valex

* HOFL (higher-order functional langauge)

21

