SML Modules and
Abstract Data Types (ADTs)

These slides are lightly edited versions of Ben Wood’s Fall ‘15 slides, some of
which are based on Dan Grossman’s material from the University of Washington.

CS251 Programming Languages
Spring 2016, Lyn Turbak

Department of Computer Science
Wellesley College

Overview of Modules and ADTs

Hiding implementation details is the most important strategy
for writing correct, robust, reusable software.

Topics:
ML structures and signatures.

Abstraction for robust library and client+library code.

Abstraction for easy change.

ADTs and functions as data.

Hiding with functions

procedural abstraction

Hiding implementation details is the most important strategy for
writing correct, robust, reusable software.

fun = x*2
Can you tell the difference? ¢, = it
val = 2
- double 4; tun = x*y
, o B fun =
val 1t : 1nt = 8 let fun 0 =y

| =
help (x-1) (y+1)
in help x x end

“Private” top-level functions would also be nice...
* share a "private" helper function

structure Name =
struct bindings end

structure (module)
namespace management and code organization

structure MyMathLib =
struct
fun fact O 1
| fact x = x * fact (x-1)

val half pi = Math.pi / 2

fun doubler x = x * 2
end

outside:
val facts = List.map MyMathlib.fact [1,3,5,7,9]

adapted from slides by Dan Grossman

signature =
sig binding-types end

signature
type for a structure (module)

List of bindings and their types:
variables (incl. functions), type synonyms, datatypes, exceptions

Separate from specific structure.

signature =

sig
val : int -> int
val : real
val : int -> int

end

structure Name :> NAME =
struct bindings end

ascription

(opague — will ignore other kinds)

Ascribing a signature to a structure
* Structure must have all bindings with types as declared in signature.

signature MATHLIB =
sig

val fact : int -> int Real power:

val half pi : real

val doubler : int -> int
end

Abstraction and Hiding

structure MyMathLib :> MATHLIB =
struct
fun fact 0 = 1
| fact = = x * fact (x-1)
val half pi = Math.pi / 2
fun doubler x = x * 2
end

Hiding with signatures

MyMathLib.doubler unbound (not in environment) outside module.

signature
sig
val : int -> int
val : real
end

structure :> MATHLIB2 =
struct
fun 0 =1
| = x * fact (x-1)
val = Math.pi / 2.0
fun =x * 2
end

Abstract Data Type

type of data and operations on it
Example: rational numbers supporting add and toString

structure Rational =
struct
datatype rational = Whole of int
| Frac of int*int
exception BadFrac

(* see adts.ml for full code *)

fun make frac (x,y) =
fun add (rl,r2) =
fun toString r =

end

Library spec and invariants

External properties [externally visible guarantees, up to library writer]
* Disallow denominators of O
* Return strings in reduced form (“4” not “4/1”, “3/2” not “9/6")
* No infinite loops or exceptions

Implementation invariants [not in external specification]
* All denominators >0
 All rational values returned from functions are reduced

Signatures help enforce internal invariants.

More on Invariants

Our code maintains (and relies) on invariants.

Maintain:

* make frac disallows 0 denominator, removes negative denominator, and
reduces result

* add assumes invariants on inputs, calls reduce if needed

Rely:
* gcd assumes its arguments are non-negative
* add uses math properties to avoid calling reduce
* toString assumes its argument is in reduced form

A first signature

With what we know so far, this signature makes sense:
* Helper functions gcd and reduce not visible outside the module.

signature =
sig
datatype = of int
| of int*int
exception
val : int * int -> rational
val : rational * rational -> rational
val : rational -> string
end

structure > RATIONAL_QPEN =

11

Problem: clients can violate invariants

Create values of type Rational.rational directly.

signature -
sig
datatype = of int
of int*int
end

Rational.Frac(1l,0)
Rational.Frac(3,~2)
Rational.Frac(40,32)

Solution: hide more!

ADT must hide concrete type definition so clients cannot
create invariant-violating values of type directly.

This attempt goes too far: type rational is not known to exist

signature

sig
exception
val : int * int -> rational
val : rational * rational -> rational
val : rational -> string

end

structure > RATIONAL_WRONG =

Abstract the type! (Really Big Deal!)

Client can pass them around, but can
Type exists, manipulate them only through modaule.
but representation absolutely hidden.

signature =

sig
type Only way to make 1°
exception

on . val : rational * rational -> rational

val : rational -> string

end

structure :> RATIONAL =

Module controls all operations with ,

so client cannot violate invariants.

Abstract Data Type

Abstract type of data + operations on it

Outside of implementation:

 Values of type can be
created and manipulated only through ADT operations.

* Concrete representation of values of type
is absolutely hidden.

signature
sig
type
exception
val : int * int -> rational
val : rational * rational -> rational
val : rational -> string
end

structure :> RATIONAL =

Abstract Data Types: two key tools

Powerful ways to use signatures for hiding:

1. Deny bindings exist.
Especially val bindings, fun bindings, constructors.

2. Make types abstract.
Clients cannot create or inspect values of the type directly.

A cute twist

In our example, exposing the Whole constructor is no problem

In SML we can expose it as a function since the datatype binding in the
module does create such a function

« Still hiding the rest of the datatype

* Still does not allow using Whole as a pattern

signature —
sig
type
exception
val : int -> rational
val : int * int -> rational
val : rational * rational -> rational
val : rational -> string

end

Signature matching rules

structure Struct :> SIG type-checks if and only if:

* Every non-abstract type in SIG is provided in Struct, as specified

* Every abstract type in SIG is provided in Struct in some way
e Can be a datatype or a type synonym

* Every val-binding in SIG is provided in Struct, possibly with a more
general and/or less abstract internal type

* 'a list -> int moregeneralthan string list -> int
* example soon

* Every exception in SIG is provided in Struct.

Of course Struct can have more bindings (implicit in above rules)

Allow to be

A key purpose of abstraction:
* No client can tell which you are using
* Can improve/replace/choose implementations later
» Easier with more abstract signatures (reveal only what you must)

UnreducedRational inadts.sml.
* Same concrete datatype.
* Different invariant: reduce fractions only in toString.

* Equivalent under RATIONAL and RATIONAL WHOLE,
but not under RATIONAL OPEN.

PairRational inadts.sml.
* Different concrete datatype.

* Equivalent under RATIONAL and RATIONAL WHOLE,
but cannot ascribe RATIONAL OPEN.

PairRational (alternate concrete type)

structure PairRational =
struct
type rational = int * int
exception BadFrac

fun make frac (x,y) = ..

fun Whole i = (i1,1) (* for RATIONAL WHOLE *)

fun add ((a,b) (c,d)) = (a*d + b*c, b*d)

fun toString r = ... (* reduce at last minute ¥*)
end

20

Some interesting details

* Internallymake frachastypeint * int -> int * int,
externally int * int -> rational
* Client cannot tell if we return argument unchanged

* Internally Whole hastype 'a -> 'a * int
externally int -> rational
* specialize 'ato int
e abstract int * int torational
» Type-checker just figures it out

* Whole cannot havetypes 'a -> int * int
or 'a -> rational (mustspecializeall "a uses)

Cannot mix and match module bindings

Modules with the same signatures still define different types

These do not type-check:
* Rational.toString(UnreducedRational .make frac(9,6))
* PairRational. toString(UnreducedRational .make frac(9,6))

Crucial for type system and module properties:
* Different modules have different internal invariants!

... and different type definitions:

* UnreducedRational.rational |looks like Rational.rational,
but clients and the type-checker do not know that

e PairRational.rational isint*int not a datatype!

Will return and contrast with Object-Oriented techniques.

Set ADT (Set.Sm |) Double ticks mean a Is an equality

type (can compare elts with =)

signature = Common idiom: if module provides
sig one externally visible type, name it t.

type Then outside references are Set. t.

val : '"'a t

val : ''a -> '"'a t

val : ''a t -> bool

val : '"'a t -> int

val : '"'a -> '"'a t -> bool

val :''"a > '"'at > '"'at

val :''"a > '"'at > '"'at

val :'"'"at->'"'at->"'at

val :'"at->'"'at->"'at

val :'"at ->T"'at->"'at

val : ''a list -> ''a t

val : ''a t -> 'a list

val : ('"'a -=> bool) -> "'a t

val - '"'at -> "'a -> bool

val : (''a -> string) -> ''a t -> string

end

Implementing the SET signature

ListSet structure
Represent sets as unordered list.
* Invariant: no duplicates

 What about ordering? Can’t use it, since not part
of signature!

FunSet structure (PS6)
Represent sets as predicate functions

OperationTreeSet structure (PS6)
Represent sets as trees of set operations

ListSet (in class)

structure ListSet :> SET =

struct
type ''a t = '"'a list
val empty = []
fun singleton x = [x]

flesh out the rest in class
end

25

Opening Modules

- ListSet.isEmpty (ListSet.empty):;
val it = true : bool

- ListSet.size (ListSet.singleton 17);
val it = 1 : int

- open ListSet;
opening ListSet

type 'a t

val empty : '"'a t

. lots of bindings omitted ..

val toString : (''a -> string) -> ''a t -> string

- isEmpty (empty);
val it = true : bool

- size (singleton 17);
val it = 1 : int

- List.size (singleton 17);
val it = 1 : 1int

Testing ListSet

- val sl = fromList [1,2,1,2,3,2,3,1,4]1;

val sl = - : 1int t
- tolist sl1;
val 1t = [4,3,2,1] : int list

- toString Int.toString sl;
val it = "{4,3,2,1}" : string

- val s2 = fromList [3,4,5,0];
val s2 = - : 1nt t

- tolist (union sl s2);

val it = [1,2,6,5,4,3] : int list
- tolist (intersection sl s2);
val it = [4,3] : int list-

- tolist (difference sl s2);

val 1t = [2,1] : int 1list

- tolist (difference s2 sl);
val it = [6,5] : int list

FunSet (PS6)

Specifying sets with predicates is fun!

Math: { x | xmod 3 = 0 }
SML: f£n => xmod 3 =0
structure :> SET =
struct
type = '"'a -> bool
val = fn => false
fun = fn => xX=y
fun = pred x
fun = pred

. Flesh out the rest in PS6 ...
end

* Which set operations are unimplementable in FunSet?
* |sfromPred implementable in ListSet?

OperationTreeSet (PS6)

(delete 4 (difference (union (union (insert
(insert
(union (insert empty)
(insert empty)))
(intersection (insert 1 empty)
(union (insert 1 empty)
(insert 6 empty)))))

empty)
empty))

b d bR

(Delete
C Difference 2
CUnion 3 Clatersection >
Cunion CUnion Csert) CUnion
ey Qosernd Qe Qwerd ([Ceopy) Coserd Closerd
(1 ety @ oy (@ Cmeyd (&) CmprS (1) ety (g o>

29

