Sum-of-Product Datatypes in SML

>\ €S5251 Programming
REEP Languages

VP =(F(YF

Spring 2016, Lyn Turbak

Department of Computer Science
Wellesley College

Motivating example: geometric figures

Suppose we want to represent geometric figures like circles, rectangles,
and triangles so that we can do things like calculate their perimeters,
scale them, etc. (Don’t worry about drawing them!)

These are so-called sum of products data:
* Circle, Rec, and Tri are tags that distinguish which one in a sum
* The numeric children of each tag are the product associated with that tag.

How would you do this in Java? In Python?

Sum-of-Product Datatypes in SML 14-2

SMLU’s datatype for Sum-of-Product types

Cirded Rect)

2.0) (3.0 4.0) (5.0) (6.0

datatype figure =
Circ of real (* radius *)
| Rect of real * real (* width, height *)
| Tri of real * real * real (* sidel, side2, side3 *)

val figs = [Circ 1.0, Rect (2.0,3.0), Tri(4.0,5.0,6.0)]
(* List of sample figures *)

val circs = map Circ [7.0, 8.0, 9.0]
(* List of three circles *)

Sum-of-Product Datatypes in SML 14-3

Functions on datatype via pattern matching

(* Return perimeter of figure *)

fun perim (Circ r) = 2.0 * Math.pi * r
| perim (Rect(w,h)) = 2.0 * (w + h)

| perim (Tri(sl,s2,s3)) = sl + s2 + s3

(* Scale figure by factor n *)

fun scale n (Circ r) = Circ (n * r)

| scale n (Rect(w,h)) = Rect (n*w, n*h)

| scale n (Tri(sl,s2,s3)) = Tri (n*sl, n*s2, n*s3)
- val perims = map perim figs

val perims = [6.28318530718,10.0,15.0] : real list

- val scaledFigs = map (scale 3.0) figs
val scaledFigs = [Circ 3.0,Rect (6.0,9.0),
Tri (12.0,15.0,18.0)] : figure list

Sum-of-Product Datatypes in SML 14-4

Options Sample Use of Options

SML has a built-in opt ion datatype defined as follows: - fun into 100 n =dif (n = 0) then NONE else SOME (100 div n);
val into 100 = fn : int -> int option
1 4 — |l
‘datatype a option = NONE | SOME of 'a - List.map into 100 [5, 3, 0, 10];
val it = [SOME 20,SOME 33,NONE,SOME 10] : int option list
- NONE - f ddopti (SOME x) (SOME y) = SOME (x + y)
val it = NONE : 'a option un & P }ons * = ® ¥
| addOptions (SOME x) NONE = NONE

_ SOME 3: addOptions NONE (SOME y) = NONE
val it = SOME 3 : int option - ! addoptlons NONE NONE - NONE;) .)
val addOptions = fn : int option -> int option -> int option

- SOME true;

val it = SOME true : bool option - addOptions (into 100 5) (into 100 10);

val it = SOME 30 : int option

- addOptions (into 100 5) (into 100 O0);
val it = NONE: int option

Sum-of-Product Datatypes in SML 14-5 Sum-of-Product Datatypes in SML 14-6

Optionsand List.find Thinking about options

(* List.find : ('a -> bool) -> 'a list -> 'a option *)
- List.find (fn y => (y mod 2) = 0) [5,8,4,1];
val it = SOME 8 : int option

What problem does option solve?

. . N
_ List.find (fn z => z < 0) [5,8,4,1]; How is the problem solved in other languages-

val it = NONE : int option

Sum-of-Product Datatypes in SML 14-7 Sum-of-Product Datatypes in SML 14-8

Creating our own list datatype

datatype 'a mylist = Nil | Cons of 'a * 'a mylist
val ints = Cons(l, Cons (2, Cons (3, Nil))) (* : int mylist *)

val strings = Cons("foo", Cons ("bar", Cons ("baz", Nil)))
(* : strings mylist *)

fun myMap £ Nil = Nil

| myMap f (Cons(x,xs)) = Cons(f x, myMap f xs)
(* : ('a -> 'b) -> 'a mylist -> 'b mylist *)
val incNums = myMap (fn x => x + 1) ints
(* val incNums= Cons (2,Cons (3,Cons (4,Nil))) : int mylistval *)

woA

val myStrings = myMap (fn s => "my s) strings
(* val myStrings = Cons ("my foo", Cons ("my bar", Cons ("my
baz",Nil))): string mylist *)

Sum-of-Product Datatypes in SML 14-9

Binary Trees

Sum-of-Product Datatypes in SML 14-10

SML bintree datatype for Binary Trees

datatype 'a bintree =
Leaf
| Node of 'a bintree * 'a * 'a bintree
(* left subtree, value, right subtree *)

val int tree= Node (Node (Leaf, 2, Leaf),
4’
Node (Node (Leaf, 1, Node(Leaf, 5, Leaf)),
6/
Node (Leaf, 3, Leaf)))

Sum-of-Product Datatypes in SML 14-11

bintree can have any type of element

cal string tree = Node (Node (Leaf,"like", Leaf),
"green",
Node (Node (Leaf,"and",Leaf),
"eggs",
Node (Leaf, "ham",Leaf)))

Sum-of-Product Datatypes in SML 14-12

Counting nodes in a binary tree

fun num nodes Leaf = 0

Your turn: height

num nodes (Node(l,v,r)) = 1 + (num nodes 1) + (num nodes r)

‘- num nodes int tree;
val it = 6 : int

- num nodes string tree;
val it = 5 : int

Sum-of-Product Datatypes in SML 14-13

(* val height = fn : 'a bintree -> int *)
(* Returns the height of a binary tree. *)
(* Note: Int.max returns the max of two ints *)

fun height Leaf = 0
| height (Node(l,v,r)) = 1 + Int.max(height 1, height r)

‘- height int tree;
val it = 4 : int

- height string tree;
val it = 3 : int

Sum-of-Product Datatypes in SML 14-14

Your turn: sum_ nodes

Your turn: inlist

(* val sum nodes = fn : int bintree -> int ¥)
(* Returns the sum of node values in binary tree of ints ¥*)

fun sum nodes Leaf = 0
| sum nodes (Node(l,v,r)) = (sum nodes 1) + v + (sum nodes r)

(* val inlist = fn : 'a bintree -> 'a list *)
(* Returns a list of the node values in in-order *)

fun inlist Leaf = []
| inlist (Node(l,v,r)) = (inlist 1) @ [v] @ (inlist r)

‘- sum nodes int tree;
val it = 21 : int

Sum-of-Product Datatypes in SML 14-15

- inlist int tree;
val it = [2,4,1,5,6,3] : int list

- inlist string tree;
- val it = ["like","green","eggs","and","ham"] : string list

Sum-of-Product Datatypes in SML 14-16

Your turn:map tree

(* val map tree = fn : ('a -> 'b) -> 'a bintree -> 'b bintree ¥)
(* maps function over every node in a binary tree *)

fun map tree f Leaf = Leaf | map tree f (Node(l,v,r)) =
Node (map_tree f 1, f v, map tree f r)

Yourturn: fold tree

- map_tree (fn x => x*2) int_tree;

val it = Node (Node (Leaf,4,Leaf),s8,
Node (Node (Leaf,2,Node (Leaf,10,Leaf)),12,
Node (Leaf,6,Leaf))) : int bintree
- map tree (fn s => String.sub(s,0)) string tree;
val it = Node (Node (Leaf,#"1",Leaf),#"g", -
Node (Node (Leaf, #"e",Leaf),#"a",
Node (Leaf,#"h",Leaf))) : char bintree

(* val fold tree = fn : ('b * 'a * 'b -> 'b) -> 'b
-> 'a bintree -> 'b *)
(* binary tree accumulation *)

fun fold tree comb leafval Leaf = leafval
| fold tree comb leafval (Node(l,v,r)) =
comb (fold _tree comb leafval 1, v, fold tree comb leafval r)

- fold tree (fn (lsum,v,rsum) => lsum + v + rsum) O int tree;
val it = 21 : int

- fold tree (fn (lstr,v,rstr) => lstr *~ v ~ rstr) " " string tree;
val it = " like green eggs and ham " : string

Sum-of-Product Datatypes in SML 14-17

Sum-of-Product Datatypes in SML 14-18

Binary Search Trees (BSTs) on integers

Sum-of-Product Datatypes in SML 14-19

You turn: Binary Search Tree insertion

fun singleton v = Node (Leaf, v, Leaf)

(* val insert: 'a bintree -> 'a -> 'a bintree *)
fun insert x Leaf = singleton x
| insert x (t as (Node(l,v,r))) =

if x = v then t

else if x < v then Node(insert x 1, v, r)

else Node(l, v, insert x r)

fun listToTree xs
foldl (fn (x,t) => insert x t) Leaf xs

- val test bst = listToTree [4,2,3,6,1,7,5];
val test bst = Node (Node (Node (Leaf,1,Leaf),
2,
Node (Leaf, 3,Leaf)),

4,
Node (Node (Leaf,5,Leaf),
6,
Node (Leaf,7,Leaf))) : int bintree

Sum-of-Product Datatypes in SML 14-20

Your turn: Binary Search Tree membership

(val member: 'a -> 'a bintree -> bool *)
fun member x Leaf = false
| member x (Node(l,v,r)) =
(X = v) orelse member x 1 orelse member X r

- member 3 test bst;
val it = true : bool

- member 8 test bst;
val it = false : bool

Sum-of-Product Datatypes in SML 14-21

Balanced Trees (PS5 Problem 5)

BSTs are not guaranteed to be balanced.

But there are other tree data structures that do guarantee balance:
AVL trees, Red/Black trees, 2-3 trees, 2-3-4 trees.

In PS5 Problem 5 you will experiment with 2-3 trees.

t3 t4

Sum-of-Product Datatypes in SML 14-22

