
Big Ideas for CS 251 
Theory of Programming Languages 

Principles of Programming Languages

CS251	Programming	Languages	
Spring	2017,	Lyn	Turbak	
	

Department	of	Computer	Science	
Wellesley	College	

Discussion: Programming Languages

•  What PLs have you used?
•  Which PLs/PL features do you like/dislike. Why?

Your experience:

•  What is a PL?
•  Why are new PLs created?

–  What are they used for?
–  Why are there so many?

•  Why are certain PLs popular?
•  What goes into the design of a PL? 

More generally:

1-2

PL	is	my	passion!	

•  First PL project in 1982 as intern 
at Xerox PARC

•  Created visual PL for 1986 MIT  
masters thesis

•  1994 MIT PhD on PL feature  
(synchronized lazy aggregates)

•  1996 – 2006: worked on types  
as member of Church project

•  1988 – 2008: Design Concepts in Programming Languages

•  2011 – current: lead TinkerBlocks research team at Wellesley

•  2012 – current: member of App Inventor development team

1-3

General	Purpose	PLs	

Python
Fortran

C/C++

Java

Racket	
ML

Haskell

CommonLisp

Perl

Ruby

1-4

JavaScript

Domain	Specific	PLs	

IDL

CSS

PostScript�

HTML	

OpenGL

LaTeX

Excel

Matlab
R

Swift
1-5

Programming	Languages:	Mechanical	View		

A	computer	is	a	machine.	Our	aim	is	to	make	
the	machine	perform	some	specified	acEons.		
With	some	machines	we	might	express	our	
intenEons	by	depressing	keys,	pushing	
buIons,	rotaEng	knobs,	etc.		For	a	computer,	
we	construct	a	sequence	of	instrucEons	(this	
is	a	``program'')	and	present	this	sequence	to	
the	machine.			

						–	Laurence	Atkinson,	Pascal	Programming	

 1-6

Programming	Languages:	LinguisEc	View		

A	computer	language	…	is	a	novel	formal	
medium	for	expressing	ideas	about	
methodology,	not	just	a	way	to	get	a	computer	
to	perform	operaEons.		Programs	are	wriIen	for	
people	to	read,	and	only	incidentally	for	
machines	to	execute.						
															–	Harold	Abelson	and	Gerald	J.	Sussman	

1-7

�Religious�	Views	
The	use	of	COBOL	cripples	the	mind;	its	teaching	should,	therefore,	be	
regarded	as	a	criminal	offense.	–	Edsger	Dijkstra	

It	is	pracEcally	impossible	to	teach	good	programming	to	students	that	
have	had	a	prior	exposure	to	BASIC:	as	potenEal	programmers	they	are	
mentally	muElated	beyond	hope	of	regeneraEon.		–	Edsger	Dijstra	

You're	introducing	your	students	to	programming	in	C?			You	might	as	well	
give	them	a	frontal	lobotomy!		–	A	colleague	of	mine	

A	LISP	programmer	knows	the	value	of	everything,	but	the	cost	of	nothing.																																																																					
-		Alan	Perlis		

I	have	never	met	a	student	who	cut	their	teeth	in	any	of	these	languages	
and	did	not	come	away	profoundly	damaged	and	unable	to	cope.	I	mean	
this	reads	to	me	very	similarly	to	teaching	someone	to	be	a	carpenter	by	
starEng	them	off	with	plasEc	toy	tools	and	telling	them	to	go	sculpt	sand	on	
the	beach.	-		Alfred	Thompson,	on	blocks	languages	

A	language	that	doesn't	affect	the	way	you	think	about	programming,	is	not	
worth	knowing.			-		Alan	Perlis		

 1-8

Programming	Language	EssenEals	

PrimiEves	

Means	of	CombinaEon	

Means	of	AbstracEon	

1-9

Think	of	the	languages	you	know.	What	means	of	abstracEon	do	they	have?		

PL Parts
Syntax: form of a PL

•  What a P in a given L look like as symbols?
•  Concrete syntax vs abstract syntax trees (ASTs)

Semantics: meaning of a PL
•  Static Semantics: What can we tell about P before running it?

–  Scope rules: to which declaration does a variable reference refer?
–  Type rules: which programs are well-typed (and therefore legal)?

•  Dynamic Semantics: What is the behavior of P? What actions does it
perform? What values does it produce?
–  Evaluation rules: what is the result or effect of evaluating each language

fragment and how are these composed?

Pragmatics: implementation of a PL (and PL environment)

1-10

•  How can we evaluate programs in the language on a computer?
•  How can we optimize the performance of program execution?  

Syntax (Form) vs. Semantics (Meaning) 
in Natural Language

Furiously sleep ideas green colorless.

Colorless green ideas sleep furiously.

Little white rabbits sleep soundly.

1-11

Concrete	Syntax:	Absolute	Value	FuncEon	

Logo: to abs :n ifelse :n < 0 [output (0 - :n)] [output :n] end

Javascript: function abs (n) {if (n < 0) return -n; else return n;}

Java: public static int abs (int n) {if (n < 0) return -n; else return n;}

Python: App Inventor:
def abs(n):
 if n < 0:
 return -n
 else:
 return n

Scheme: (define abs (lambda (n) (if (< n 0) (- n) n)))

PostScript: /abs {dup 0 lt {0 swap sub} if} def

1-12

Abstract	Syntax	Tree	(AST):		
Absolute	Value	FuncEon	

varref	

return	

n	

return	

intlit	

0

relaEonalOperaEon	

varref	

n	

condiEonalStatement	

funcEonDeclaraEon	

abs	

n
test	

then	

body	
params	funcDo

nName	

rand1	

name	

name	

1-13

arithmeEcOperaEon	

value	

subtract	

varref	

n	

name	

value	

intlit	

0

lessThan	

value	rand1	

This	AST	abstracts	over	the	
concrete	syntax	for	the	Logo,	
JavaScript,	and	Python	
definiEons.		The	other	definiEons	
would	have	different	ASTs.	

Dynamic	SemanEcs	Example	1	

1-14

What	is	the	meaning	of	the	following	expression?	
	

(1 + 11) * 10

Dynamic	SemanEcs	Example	2	

1-15

What	is	printed	by	the	following	program?		
	

a = 1;

b = a + 20;

print(b);

a = 300

print(b);

count = 0;

fun inc() { count = count + 1; return count; }

fun dbl(ignore, x) { return x + x; }

print(dbl(inc(), inc())

Dynamic	SemanEcs	Example	3	

1-16

Suppose	a	is	an	array	(or	list)	containing	the	three	integer	values	10,	20,	and	30	
in	the	following	languages.	What	is	the	meaning	of	the	following	expressions/
statements	in	various	languages	(the	syntax	might	differ	from	what’s	shown).	

	

		

a[1] a[3] a[2] = "foo" a[3] = 17

Java	

C	

Python	

JavaScript	

Pascal	

App	Inventor	

StaEc	SemanEcs	Example	1	

1-17

Which	of	the	following	Java	examples	is	well-typed	(i.e.,	passes	the	type	checker)?		
How	do	you	know?	What	assumpEons	are	you	making?	

	

	

2 * (3 + 4)

2 < (3 + 4)

2 < True

if (a < b) {
 c = a + b;
} else {
 c = a * b;
}

if (a) {
 c = a + b;
} else {
 c = a * b;
}

if (a < b) {
 c = a + b;
} else {
 c = a > b;
}

public boolean f(int i, boolean b) {
 return b && (i > 0);
}

public int g(int i, boolean b) {
 return i * (b ? 1 : -1);
}

public int p(int w) {
 if (w > 0) { return 2*w; }
}

public int q(int x) { return x > 0; }

public int r(int y) { return g(y, y>0); }

public boolean s(int z) { return f(z); }

A

B

C

D

E

F G

H

I	

J	

K

L

Static Semantics Example 2: Detecting Loops
Which	of	these	following	Python	programs	has	inputs	
for	which	it	loops	forever?	

2-18

def f(x):
 return x+1

def g(x):
 while True:
 pass
 return x

def h2(x):
 if x <= 0:
 return x
 else:
 return h(x+1)

def h(x):
 while x > 0:
 x = x+1
 return x

def g2(x):
 return g2(x)

def k(x):
 while x != 1:
 if (x % 2) == 0:
 x = x/2
 else:
 x = 3*x + 1
 return 1

A

B C

E F

G

Static Semantics and Uncomputability
It	is	generally	impossible	to	answer	any	interesEng	quesEon	about	
staEc	program	analysis!	
	
This	is	a	consequence	of	Rice’s	Theorem	(see	CS235).		
	

For example, will this program ever:
•  halt on certain inputs
•  encounter an array index out of bounds error?
•  throw a NullPointerException?
•  access a given object again?
•  send sensitive information over the network?
•  divide by 0?
•  run out of memory, starting with a given amount available?
•  try to treat an integer as an array?
	
	

2-19

•  Church-Turing	Thesis:	Computability	is	the	common	spirit	embodied	by	
this	collecEon	of	formalisms.	

•  This	thesis	is	a	claim	that	is	widely	believed	about	the	intuiEve	noEons	of	
algorithm	and	effecEve	computaEon.		It	is	not	a	theorem	that	can	be	
proved.		

•  Because	of	their	similarity	to	later	computer	hardware,	Turing	machines	
(CS235)	have	become	the	gold	standard	for	effecEvely	computable.		

•  We�ll	see	in	CS251	that	Church’s	lambda-calculus	formalism	is	the	
foundaEon	of	modern	programming	languages.		

•  A	consequence:	programming	languages	all	have	the	�same�	
computaEonal	�power�	in	term	of	what	they	can	express.	All	such	
languages	are	said	to	be	Turing-complete.		

The	Church-Turing	Thesis	
and	Turing-Completeness	

2-20

Expressiveness	and	Power	

•  About:	
–  ease	
–  elegance	
–  clarity	
– modularity	
–  abstracEon	
–  ...	

•  Not	about:	computability	
•  Different	problems,	different	languages	

–  Facebook	or	web	browser	in	assembly	language?	

2-21

Pragmatics: Raffle App In App Inventor

Designer	Window	 Blocks	Editor	

22

To	enter	the	raffle,	text	me	now	with			
an	empty	message:	339-225-0287	

hIp://ai2.appinventor.mit.edu	

How	hard	is	this	to	do	in	more	tradiEonal	
development	environments	for	Android/
iOS?	

Pragmatics: Metaprogramming

1-23

PLs	are	implemented	in	terms	of	metaprogams	=	programs	that	
manipulate	other	programs.		

This	may	sound	weird,	but	programs	are	just	trees	(ASTs),	so	a	
metaprogram	is	just	a	program	that	manipulates	trees	(think	a	
more	complex	version	of	CS230	binary	tree	programs).		

ImplementaEon	strategies:		

•  Interpreta(on:	interpret	a	program	P	in	a	source	language	S	in	terms	of	an	
implementaEon	language	I.		

•  Transla(on	(compila(on):	translate	a	program	P	in	a	source	language	S	to	a	
program	P’	in	a	target	language	T	using	a	translator	wriIen	in	
implementaEon	language	I.		

•  Embedding:	express	program	P	in	source	language	S	in	terms	of	data	
structures	and	funcEons	in	implementaEon	language	I.		

	

Metaprogramming:	InterpretaEon	

Interpreter		
for	language	L		
on	machine	M	

Machine	M	
Program	in	
language	L		

1-24

Metaprogramming:	TranslaEon	

Interpreter		
for	language	B		
on	machine	M	

Machine	M	

Program	in	
language	A		 A	to	B	translator		

	

Program	in	
language	B	

1-25

Metaprogramming:	Embedding	

Interpreter		
for	language	B		
on	machine	M	

Machine	M	
Program	in	
language	A	
embedded	in	
language	B		

1-26

Metaprogramming:	Bootstrapping	Puzzles	

1-27

How	can	we	write	a	Java-to-x86	compiler	in	Java?		

We’ll	learn	how	to	
understand	such	puzzles!		

Metaprogramming:	Programming	Language	Layers	

kernel	

syntacEc	sugar	

primiEve		
values/datatypes	

system	libraries	

user	libraries	

1-28

PL Dimensions

1-29

PLs		differ	based	on	decisions	language	designers	make	in	many	dimensions.	E.g.:	

•  First-class	values:	what	values	can	be	named,	passed	as	arguments	to	
funcEons,	returned	as	values	from	funcEons,	stored	in	data	structures.		
Which	of	these	are	first-class	in	your	favorite	PL:	arrays,	funcEons,	variables?		

•  Naming:	Do	variables/parameters	name	expressions,	the	values	resulEng	
from	evaluaEng	expressions,	or	mutable	slots	holding	the	values	from	
evaluaEng	expressions?		How	are	names	declared	and	referenced?	What	
determines	their	scope?		

•  State:	What	is	mutable	and	immutable;	i.e.,	what	enEEes	in	the	language	
(variables,	data	structures,	objects)	can	change	over	Eme.		

•  Control:	What	constructs	are	there	for	control	flow	in	the	language,	e.g.	
condiEonals,	loops,	non-local	exits,	excepEon	handling,	conEnuaEons?		

•  Data:	What	kinds	of	data	structures	are	supported	in	the	language,	including	
products	(arrays,	tuples,	records,	dicEonaries),	sums	(opEons,	oneofs,	
variants),	sum-of-products,	and	objects.		

•  Types:		Are	programs	staEcally	or	dynamically	typed?	What	types	are	
expressible?	

Programming	Paradigms	

1-30

•  Impera(ve	(e.g.	C,	Python):	ComputaEon	is	step-by-step	execuEon	on	a	
stateful	abstract	machine	involving	memory	slots	and	mutable	data	
structures.		

•  Func(onal,	func(on-oriented	(e.g	Racket,	ML,	Haskell):	ComputaEon	is	
expressed	by	composing	funcEons	that	manipulate	immutable	data.	

•  Object-oriented	(e.g.	Simula,	Smalltalk,	Java):	ComputaEon	is	expressed	in	
terms	of	stateful	objects	that	communicate	by	passing	messages	to	one	
another.		

•  Logic-oriented	(e.g.	Prolog):	ComputaEon	is	expressed	in	terms	of	declaraEve	
relaEonships.		

Note:	In	pracEce,	most	PLs	involve	mulEple	paradigms.	E.g.		

•  Python	supports	funcEonal	features	(map,	filter,	list	comprehensions)	and	
objects		

•  Racket	and	ML	have	imperaEve	features.		

quicksort :: Ord a => [a] -> [a]
quicksort [] = []
quicksort (p:xs) =
 (quicksort lesser)  
 ++ [p]
 ++ (quicksort greater)
 where
 lesser = filter (< p) xs
 greater = filter (>= p) xs

1-31

Paradigm	Example:	Quicksort	
void qsort(int a[], int lo, int hi) {

 int h, l, p, t;

 if (lo < hi) {

 l = lo;

 h = hi;

 p = a[hi];

 do {

 while ((l < h) && (a[l] <= p))

 l = l+1;

 while ((h > l) && (a[h] >= p))

 h = h-1;

 if (l < h) {

 t = a[l];

 a[l] = a[h];

 a[h] = t;

 }

 } while (l < h);

 a[hi] = a[l];

 a[l] = p;

 qsort(a, lo, l-1);

 qsort(a, l+1, hi);

 }

}

ImperaEve	Style	
	(in	C;	Java	would	be	similar)	

FuncEonal	Style	(in	Haskell)	

Why?	Who?	When?	Where?	
Design	and	ApplicaEon	

•  Historical context
•  Motivating applications

–  Lisp: symbolic computation, logic, AI, experimental programming
–  ML: theorem-proving, case analysis, type system
–  C: Unix operating system
–  Simula: simulation of physical phenomena, operations, objects
–  Smalltalk: communicating objects, user-programmer,

pervasiveness
•  Design goals, implementation constraints

–  performance, productivity, reliability, modularity, abstraction,
extensibility, strong guarantees, …

•  Well-suited to what sorts of problems?
1-32

Why	study	PL?	
•  Crossroads	of	CS	

•  Approach	problems	as	a	language	designer.	

–  "A	good	programming	language	is	a	conceptual	universe	for	thinking	
about	programming"	
--	Alan	Perlis	

–  Evaluate,	compare,	and	choose	languages	

–  Become	beIer	at	learning	new	languages	

–  become	a	beIer	problem-solver	

–  view	API	design	as	language	design	
•  Ask:	

–  Why	are	PLs	are	the	way	they	are?	

–  How	could	they	(or	couldn't	they)	be	beIer?	
–  What	is	the	cost-convenience	trade-off	for	feature	X?	

1-33

Administrivia	

•  Schedule, psets, lateness policy, etc.: 
see http://cs.wellesley.edu/~cs251/

•  PS0 (introductions) will be posted this afternoon;
due tomorrow

•  PS1 will be posted tomorrow; due next Friday
•  install Dr. Racket for tomorrow
•  visit me in office hours!

1-34

