Introduction To Standard ML

CS251 Programming Languages
Spring 2017

Lyn Turbak, Meera Hejmadi,

Mary Ruth Ngo, & Angela Wu

*

7]
Jfi

7

Ac

Department of Computer Science
Wellesley College

The ML Programming Language

ML (Meta Language) was developed by Robin Milner in 1975
for specifying theorem provers. It since has evolved into a
general purpose programming language.

Important features of ML:

« static typing: catches type errors at compile-time.

» type reconstruction: infers types so programmers don’t have to
write them explicitly

e polymorphism: functions and values can be parameterized over
types (think Java generics, but much better).

» function-oriented (functional): encourages a composition-based
style of programming and first-class functions

» sum-of-products dataypes with pattern-matching: simplifies the
manipulation of tree-structured data

These features make ML an excellent language for mathematical
calculation, data structure implementation, and programming
language implementation.

Introduction to Standard ML

2

ML Dialects

There are several different dialects of ML. The two we use at Wellesley are:

o Standard ML (SML): Version developed at AT&T Bell Labs.
We'll use this in CS251. The particular implementation we’ll use is
Standard ML of New Jersey (SMLNJ):

o Objective CAML: Version developed at INRIA (France). We have
sometimes used this in other Wellesley courses.

These dialects differ in minor ways (e.g., syntactic conventions, library
functions). See the following for a comparison:

Introduction to Standard ML

3

SML and wx

07:39 AM Thursday @ M’b wx

Terminal - wx@wx: ~
File Edit View Terminal Tabs Help
[X ~1% sml
Standard ML of New Jersey v110.78 [built: Tue Aug 25 23:58:36 2015]

int -> int

fun triple X 3 B
val triple = fn : int -> int

IR P E DS E] Left

We will use SML inside the wx Virtual Machine appliance. Details on how to install
wx and SML within wx will be supplied.

For initial examples, it’s easiest to run SML in a terminal window, as shown above.
But we’ll soon see (slides 18 — 19) running it in Emacs is much better!

Introduction to Standard ML

4

Learning SML by Interactive Examples

Try out these examples. (Note: many answers are missing in these
slides so you can predict them. See the solns slides for answers.

[wx@wx ~] sml
Standard ML of New Jersey v110.78 [built: Wed Jan 14 12:52:09 2015]

-1+ 2;

val it = 3 : int
- 3+4;

val it = 7 : int
- 5+6

val it = 11 : int

val it = 15 : int

Introduction to Standard ML, 5

Naming Values

- val a = 2 + 3;

val a = : int

- a * a;

val it = . int
- it + a;

val it = : int

Introduction to Standard ML

6

Negative Quirks

-2 -5;
val it = ~3 : int
- =17;
stdIn:60.1 Error: expression or pattern begins with infix
identifier "-"
stdIn:60.1-60.4 Error: operator and operand don't agree
[literal]

operator domain: 'Z * 'Z

operand: int

in expression:

- 17

- ~17;
val it = ~17 : int

_3*~l;
val it = ~3 : int

Introduction to Standard ML, 7

Division Quirks

-7/ 2;
stdIn:1.1-1.6 Error
[literal]
operator domain:
operand:
in expression:
7/ 2

- 7.0 / 2.0;
val it = 3.5 : real

- 7 div 2; (* integ
val it = 3 : int

: operator and operand don't agree

real * real
int * int

er division *)

(* For a description of all top-level operators, see:

*)

Introduction to Standard ML

8

When Parentheses Matter

- dbl(5); (* parens are optional here *)
val it = 10 : int

Simple Functions

- val inc = fn x => x + 1;

val inc = fn : int -> int (* SML figures out type! *) - (dbl 5); (* parens are optional here *)

. val it = 10 : int
= 1lnc ay

1 it = HE . . .
val it int - inc (dbl 5); (* parens for argument subexpressions are required! *

val it = 11 : int
- fun dbl y =y * 2;

(* Syntactic sugar for val dbl = fn y =>y * 2 *)

- - - (inc dbl) 5;
val dbl = fn : int -> int

stdIn:1.2-2.2 Error: operator and operand don't agree [tycon mismatch]
operator domain: int

- db} o . operand: int -> int
val it = : int . .
in expression:
, . . inc dbl
- (fn x => x * 3) 10; (* Don t need to name function to use it *)
val it = : int

- inc dbl 5; (* default left associativity for application *)
stdIn:22.1-22.10 Error: operator and operand don't agree [tycon

mismatch]
operator domain: int
operand: int -> int
in expression:
inc dbl
Introduction to Standard ML, 9 Introduction to Standard ML 10

Booleans Conditionals

-l - fun f n = if n > 10 then 2 * n else n * n;
val it = : bool]
val £ = fn : int -> int
-1 > 2;
val it = bool
- £ 20;
- (l.: 1) andalso (1 > 2); val it — . il’lt
val it = : bool
- (1 =1) orelse (1 = 2); - £ 5;
val it = : bool .’
val it = : 1int
- (3 = 4) andalso (5 = (6 div 0)); (* short-circuit evaluation *)
val it = bool
- fun isEven n = (n mod 2) = 0

val isEven = fn : int -> bool (* SML figures out type! *)

- isEven 17;
val it = : bool

- isEven 6;

val it = : bool Introduction to Standard ML 11 Introduction to Standard ML 12

Recursion

fun fact n =
if n = 0 then
= 1
= else
= n * (fact (n - 1)); (* fun names have recursive scope ¥*)
val fact = fn : int -> int
(* simpler than Java definition b/c no explicit types! *)

- fact 5;
val it = : int

- fact 12;
val it = : int

- fact 13;

uncaught exception Overflow [overflow]
raised at: <file stdIn>
(* SML ints have limited size ® *)

Introduction to Standard ML 13

Easier to Put Your Code in a File

(* This is the contents of the file

~cs251/download/sml/mydefns.sml N

(* By the way, comments nest properly in SML! *)

It defines integers a and b and functions named sq, hyp, and fact *)
val a = 2 + 3
val b =2 * a

fun sgn =n * n (* squaring function *)

(* calculate hypotenuse of right triangle with sides a and b *)
fun hyp a b = Math.sqrt(Real.fromInt(sq a + sq b))

fun fact n = (* a recursive factorial function *)
if n = 0 then
1
else
n * (fact (n - 1)

* Fileis a sequence of value/function definitions.
* Definitions are not followed by semi-colons in files!
¢ There are no continuation characters (equal signs) for multiple-line definitions.

- Introduction to Standard ML, 14

Using Code From a File

- Posix.FileSys.getcwd(); (* current working directory *)
val it = "/students/gdome" : string

- Posix.FileSys.chdir ("/students/gdome/cs251/sml") ;
(* change working directory *)
val it = () : unit

- Posix.FileSys.getcwd() ;
val it = "/students/gdome/cs251/sml" : string

- use "mydefns.sml"; (* load defns from file as if *)
[opening mydefns.sml] (* they were typed manually *)
val a = 5 : int

val b = 10 : int

val sq = fn : int -> int

val hyp = fn : int -> int -> real

val fact = fn : int -> intval

it = () : unit

- fact a
val it = 120 : int

Introduction to Standard ML 15

Another File Example

(* This is the contents of the file test-fact.sml *)
val fact 3 = fact 3

val fact a = fact a

- use "test-fact.sml";
[opening test-fact.sml]
val fact 3 = 6 : int
val fact a 120 : int
val it = () : unit

Introduction to Standard ML 16

Nested File Uses

(* The contents of the file load-fact.sml *)
use "mydefns.sml”; (* semi-colons are required here *)

use “test-fact.sml”;

- use "load-fact.sml";

[opening load-fact.sml]

[opening mydefns.sml]

val a = 5 : int

val b = 10 : int

val sg = fn : int -> int

val hyp = fn : int -> int -> real
val fact = fn : int -> intval
[opening test-fact.sml]

val fact 3 = 6 : int

val fact a = 120 : int
val it = () : unit
val it = () : unit

Introduction to Standard ML 17

Use Emacs within wx for all your SML editing/testing

1O @ e WO G mdhem emace..

mydefns. sml - emacs@wx. wellesley.edu
File Edit Options Buffers Tools SML Help

Y 8 8 X Save Undo

(* This is the contents of the file
~cs251/download/sml/mydefns.sml
(* By the way, comments nest properly in SML! *)
It defines integers a and b and functions named sq, hyp, and fact *)

val a =2+ 3

valb=2*a

funsqn =n*n (* squaring function *)

(* calculate hypotenuse of right triangle with sides a and b *)
fun hyp a b = Math.sqrt(Real.fromInt(sq a + sq b))

fun fact n = (* a recursive factorial function *)
if n =0 thenf]
1

1se
n * (fact (n - 1))
-:--- mydefns.sml ALl L16 Git-master

[Dopening /tmp/emacs-region379GEcD]
a=5:int
b =10 : int
sq = fn : int -> int
hyp = fn : int -> int -> real
fact = fn : int -> int
it = () : unit

Bot L41 (Inferior-SML: run Compilation)

RBOPoIEEOGE Leftse

. 04:27 AM Monday B i wx |

Emacs editor
buffer in

SML mode.
Edit your

SML code here.

sml interpreter
buffer.

Evaluate SML
expressions here.
Create this via
M-x sml or
C-cC-s

(see next slide).

Introduction to Standard ML 18

Use Emacs SML commands to start *sml* interpreter
buffer and send editor buffer contents to it

mydefns.sm macs@wx wellesley.edu A=+
Flle Edit Options Buffers Tools| SML [He

=i -
U @@ x & W ““““““““““
(* This is the contents of Insert SML form Ccper Start SMLrepl

~cs251/download/sml/myde Forms » Compile the project C-cC-c
(* By the way, comments
It defines integers a ar

Indent region C-M-\ sendfile c-c -l

outdent line <backtab> | Switch to SML repl C-c C-s I
val a =2+ 3 Customize SML-mode I Send buffer C-c C-bl

val b =2 * a SML mode help C-hm Send region C-c C-r
Send function
- * * -~ 1 *
fun sg n =n * n (* squaring function *) Goto next error Ccx®

SML>Process>Switch to SML repl (orC-c C-s) createsthe
sml interpreter buffer. This is just like the SML interpreter buffer in
a terminal window, but it’s in an Emacs buffer.

SML>Process>Send buffer (orC-c C-b) sends the contents of the
SML editor buffer to the *sml* buffer. This is much more convenient than use
for loading the contents of a file into the *sml* buffer.

Introduction to Standard ML 19

How to exit SML interpreter?

[wx@wx ~] sml
Standard ML of New Jersey v110.78
[built: Wed Jan 14 12:52:09 2015]

-1+ 2;
val it = 3 : int

<—{ Type Control-d at the SML prompt

[gdome@tempest ~]

Introduction to Standard ML 20

Your turn: £ib

In an Emacs buffer, translate the following recursive Racket function into iSML,
and then test your SML f£ib function in the *sml* interpreter buffer.

(define (fib n)
(1f (< n 2)
n
(+ (fib
(fib

Strings

- "foobar";

val it = string

— "Foo" A "bar" A "haz";

val it = string
- print ("baz" * "quux");
bazquuxval it = () unit

- print ("baz" ~ "quux\n");
bazgquux

val it = () : unit

- print "baz" ~ "quux\n";

stdIn:1.1-1.23 Error:

[tycon mismatch]
operator domain:
operand:
in expression:

(* parens are essential here!

operator and operand don't agree

string * string

unit * string

*)

print "baz" ~ "quux\n"
Introduction to Standard ML 21 Introduction to Standard ML, 22
Other String Operations

- String.size ("foo" * "bar"); CharaCters
val it = : int - #"a";

val it = #"a" char
- String.substring ("abcdefg", 2, 3); (* string, start index, len *)
val it = string - String.sub ("foobar",0);

val it = char
("bar" < "foo", "bar" <= "foo", "bar" = "foo", "bar" > "foo");
val it = (, , ,) bool * bool * bool * bool - String.sub ("foobar",5);

val it = char
- (String.compare ("bar", "foo"), String.compare ("foo", "foo"),
= String.compare ("foo", "bar")); - String.sub ("foobar",#6);
val it = (, ,) order * order * order uncaught exception Subscript [subscript out of bounds]

raised at: stdIn:17.1-17.11

- String.size;
val it = fn string -> int - String.str #"a"; (* convert a char to a string *)

val it = "a" string
- String.substring;
val it = fn string * int * int -> string (String.str (String.sub ("ABCD",2))) ~ "S"

= " (Int.toString (112 + 123));
- String.compare; val it = string
val it = fn string * string -> order

- (1+2, 3=4, "foo" ”~ "bar", String.sub("baz",2));
(* An API for all SMLNJ String operations can be found at: val it = (, ’ ’) int * bool * string * char

*)
Introduction to Standard ML, 23 Introduction to Standard ML, 24

Tuples

- val tpl = (1 + 2, 3 <4, 5 * 6, 7=28);
val tpl = (3,true,30,false) : int * bool * int * bool
- #1 tpl;

val it = 3: int

- #2 tpl;
val it = true : bool

(* In practice, *always* use pattern matching
(see later slides) rather than #1, #2, etc. *)
- ((#1 tpl) + (#3 tpl), (#2 tpl) orelse (#4 tpl)):;

val it = (33,true) : int * bool

Introduction to Standard ML 25

Pattern-matching Tuple Function Arguments

- fun swap (x,y) = (v, x);
val swap = fn : 'a * 'b -> 'b * 'a
(* infers polymorphic type!
'a and 'b stand for any two types. *)

- swap (1+2, 3=4);
val it = (false,3) : bool * int

- swap (swap (1+2, 3=4));
val it = (3,false) : int * bool

- swap ((1+2, 3=4), ("foo" ~ "bar", String.sub("baz",2)));

val it = (("foobar",#"z"), (3, false)) (string * char) *
(int * bool)

Introduction to Standard ML 26

How to Pass Multiple Arguments

- fun avgl (x, y) = (x + y) div 2; (* Approach 1:
val avgl = fn : int * int -> int
- avgl (10,20);

val it = 15 : int

use pairs *)

- fun avg2 x = (fn y => (x + y) div 2); (* Approach 2: currying *)

val avg2 = fn : int -> int -> int

- avg2 10 20;
val it = 15 : int

- fun avg3 x y = (x + y) div 2; (* Syntactic sugar for currying *)
val avg3 = fn : int -> int -> int
- avg3 10 20;

val it = 15 : int

- app5 (avg3 15);
val it = 10 : int

- app5 (fn i => avgl(15,i));
val it = 10 : int

Introduction to Standard ML 27

Functions as Arguments

- fun appb5 £ = £ 5;
val app5 = fn : (int -> 'a) -> 'a
(* infers polymorphic type!

'a stands for “any type” ¥*)

- appb (fn x => x + 1);
val it = 6 : int

- fun dbl y = 2*y;
val dbl = fn : int -> int

- appb dbl;
val it = 10 : int

We’ |l see later that functions can also be returned as results from other
functions and stored in data structures, so functions are first-class in SML
just as in Racket.

Introduction to Standard ML 28

Your turn: translate these from Racket to SML
(define (sum-between lo hi)
(i1f (> lo hi)
lo
(+ lo
(sum-between (+ lo 1) hi))))
(sum-between 3 7)

(define (app-3-5 f) (£ 3 5))

(define (make-linear a b)
(lambda (x) (+ (* a x) b)))

((app-3-5 make-linear) 10)

Function Composition

- val inc x = x + 1;
val inc = fn int -> int
- fun dbl y =y * 2;

val dbl = fn int -> int

- (inc o dbl) 10; (* SML builtin infix function composition *)

val it = 21 : int

- (dbl o inc) 10;
val it = 22 : int

- fun id x = x; (* we can define our own identity

fcn *)

val id = fn : 'a -> 'a (* polymorphic type; compare to

Java's public static <T> T id (T x) {return x;}

- (inc o id) 10;
val it = 11 : int

- (id o dbl) 10;
val it = 20 : int

- (inc o inc o inc o inc) 10;
val it = 14 : int

*)

Introduction to Standard ML, 29 Introduction to Standard ML 30
Iterating via Tail Recursion Adding print statements
(* This is the contents of the file step.sml *) (* This is the contents of the file step-more.sml *
fun step (a,b) = (atb, a*b) fun printPair (a,b) =
print ("(" ~ (Int.toString a) ~ ","
fun stepUntil ((a,b), limit) = (* no looping constructs in ML; *) ~ (Int.toString b) ~ ")\n")
if a >= limit then (* use tail recursion instead! *)
(a,b) fun stepUntilPrint ((a,b), limit) =
else if a >= limit then
stepUntil (step(a,b), limit) (a,b)
else

- use ("step.sml"); (printPair (a,b); (* here, semicolon sequences expressions *)
[opening step.sml] stepUntilPrint (step(a,b), limit)
val step = fn : int * int -> int * int
val stepUntil = fn (int * int) * int -> int * int - use ("step-more.sml");
val it = () : unit [opening step-more.sml]

val printPair = fn : int * int -> unit
- step (1,2); val stepUntilPrint = fn (int * int) * int -> int * int
val it = (3,2) int * int val it = () : unit
- step (step (1,2)); - stepUntilPrint ((1,2),100);
val it = (5,6) int * int (1,2)

(3,2)
- let val (x,y) = step (step (1,2)) in x*y end; (5,6
val it = 30 : int (11,30)

(41,330)
- stepUntil ((1,2), 100); val it = (371,13530) int * int
val it = (371,13530) int * int Introduction to Standard ML 31 Introduction to Standard ML 32

Gotcha! Scope of Top-Level Names

- val a = 2 + 3;
val a = 5 : int

- val b = a * 2;
val b = 10 : int

- fun adda x = x + a; (* adda adds 5 *)
val adda = fn : int -> int

- adda 7;
val it = 12 : int

- adda b;
val it = 15 : int

- val a = 42; (* this is a different a from the previous one *)
val a = 42 : int

- b; (* ML values are immutable; nothing can change b’'s value *)
val it = 10 : int

- adda 7;
val it = 12 : int (* still uses the a where adda was defined *)

Introduction to Standard ML 33

Gotcha! Mutually Recursive Function Scope

(* This version of stepUntil DOES NOT WORK because it can only
‘“see’’ names declared *above* it, and the step function is
defined *below* it *)

fun stepUntil ((a,b), limit) = (* no looping constructs in ML; *)
if a >= limit then (* use tail recursion instead! *)
(a,b)
else

stepUntil (step(a,b), limit)

fun step (a,b) = (atb, a*b)

(* This version of stepUntil DOES WORK because it uses keyword
and in place of fun to define mutually recursive functions. *)

fun stepUntil ((a,b), limit) = (* no looping constructs in ML; *)
if a >= limit then (* use tail recursion instead! *)
(a,Db)
else

stepUntil (step(a,b), limit)

and step (a,b) = (atb, a*b) (* Note keyword fun replaced by and *)

Introduction to Standard ML 34

Your turn: translate fib-iter to SML

(define (fib-iter n)
(fib-tail n 0 0 1))

(define (fib-tail n i fib i fib i plus 1)
(if (= 1 n)
fib i
(fib-tail n
(+ 1 1)
fib i plus 1
(+ fib i fib i plus 1))))

Introduction to Standard ML 35

Local Naming via let

let is used to define local names. Any such names “shadow” existing definitions
from the surrounding scope.

let val a = 27 (* 15t let binding *)
val b = 3 (* 27 Dbinding *)
fun fact x = x + 2 (* 3™ binding *)
in fact (a div b) (* let body *)
end; (* end terminates the let ¥*)
val it = 11 : int

let-bound names are only visible in the body of the 1et.

- fact (a div b);
(* these are global names:
* fact is factorial function.
* a is 42
* b is 10 *)
val it = 24 : int

Introduction to Standard ML 36

Pattern Matching with Tuples

val tpl = (1 + 2, 3 <4, 5 * 6, 7 = 8)
(* val tpl = (3,true,30,false) : int * bool * int * bool *)

(* It is *very bad* SML style to use #1, #2, etc.

to extract the components of a tuple. ¥*)
val tpl2 = ((#1 tpl) + (#3 tpl), (#2 tpl) orelse (#4 tpl));
(* val tpl2 = (33,true) : int * bool *)

(* Instead can “deconstruct” tuples via pattern matching.
Always do this rather than using #1, #2 etc. *)

val tpl3 =
let val (i1, bl, i2, b2) = tpl
in (il + i2, bl orelse b2)
end
(* val tpl3 = (33,true) : int * bool *)

Introduction to Standard ML 37

Local Functions in SML

Functions locally defined with 1et are often used in SML
to improve program organization and name hiding,
aspecially with tail recursive functions. For example:

fun fibIter n =
let fun fibTail i fib_i fib_i_plus_1 =
if i = n then (* "sees" n from outer definition *)
fib_i
else
fibTail (i+1) fib_i plus_ 1 (fib_i+fib_i plus_1)
in fibTail @ @ 1
end

Introduction to Standard ML 38

