List Recursion

@ CS251 Programming
* YH=ETH) | % Languages
55|82 4. |22| Spring 2018, Lyn Turbak
A)59
<1 \~\\.§,

Department of Computer Science
Wellesley College

Recursive List Functions in Racket

Because Racket lists are defined recursively, it’s natural to process
them recursively.

Typically (but not always) a recursive function recf on a list
argument L has two cases:

* base case: what does recf return when L is empty?
(Use null? to test for an empty list.)

* recursive case: if L is the nonempty list (cons Vfirst Vrest)
how are Vfirst and (recf Vrest)combined to give the result
for (recf L)?

Note that we always ““blindly” apply recf to Vrest!

List Recursion 2

Recursive List Functions: Divide/Conquer/Glue (DCG)
strategy for the general case [in words]

Step 1 (concrete example): pick a concrete input list, typically 3 or 4 elements
long. What should the function return on this input?

E.g. A sum function that returns the sum of all the numbers in a list:
(sum '(5 7 2 4)) =* 18

Step 2 (divide): without even thinking, always apply the function to the rest
of the list. What does it return? (sum ' (7 2 4)) =* 13

Step 3 (glue): How to combine the first element of the list (in this case, 5) with
the result from processing the rest (in this case, 1 3) to give the result for

processing the whole list (in this case, 18)? (+ 5 (sum '(7 2 4)) =* 18

Step 4 (generalize): Express the general case in terms of an arbitrary input:
(define (sum nums)

(+ (first nums) (sum (rest nums)) ..)

List Recursion

3

Recursive List Functions: Divide/Conquer/Glue (DCG)
strategy for the general case [in diagram]

Divide: what should function
return for rest of list?
(wishful thinking!)

Glue: how to combine the
first element of the list with
the result of recursively
processing rest of the list
to get the desired result

for the whole list?

combine

List Recursion 4

Recursive List Functions: base case via singleton case

Deciding what a recursive list function should return for the empty list is not
always obvious and can be tricky. E.g. what should (sum ' ()) return?

If the answer isn’t obvious, consider the ““penultimate case” in the recursion,
which involves a list of one element:

)) =% 4

Divide: what value Vnull should
function return for empty list?

In this case, Vnull should be 0, which is the identity element for addition.

But in general it depends on the details of the particular combiner determined
from the general case. So solve the general case before the base case!

List Recursion 5

Putting it all together: base & general cases

(sum nums) returns the sum of the numbers in the list nums

(define (sum ns)
(1f (null? ns)
0

(+ (first ns)
(sum (rest ns)))))

List Recursion 6

Understanding sum: Approach #1

(sum ' (7 2 4))

/ 2 A4 .
\ \;/0
+L/6

We'll call this the recursive accumulation pattern

List Recursion 5-7

Understanding sum: Approach #2

In (sum (list 7 2 4)),thelistargumentto sumis
(cons 7 (cons 2 (cons 4 null))))
Replace cons by + and null by 0 and simplify:
(+ 7 (+ 2 (+ 4 0))))
= (+ 7 (+ 2 4)))
= (+ 7 6)

=13

Pairs and Lists 8

Generalizing sum: Approach #1

(recf (list 7 2 4))

4 ®

nullval
combme
comblne

comblne W

i

Pairs and Lists 9

Generalizing sum: Approach #2

In (recf (list 7 2 4)),thelistargumentto recfis
(cons 7 (cons 2 (cons 4 null))))

Replace cons by combine and null by nullval and simplify:

(combine 7 (combine 2 (combine 4 nullval))))

List Recursion 10

Generalizing the sum definition

(define (recf ns)
(1f (null? ns)
nullval

(combine (first ns)
(recf (rest ns)))))

List Recursion 11

Your turn your

Define the following recursive list functions and test them in Racket:
(product ns) returns the product of the numbers in ns

(min-1list ns) returns the minimum of the numbersin ns
Hint: use min and +inf . O (positive infinity)

(max-1list ns) returns the minimum of the numbersin ns
Hint: use max and —inf . 0 (negative infinity)

(all-true? bs) returns #t if all the elements in bs are truthy; otherwise
returns #£. Hint: use and

(some-true? bs) returns a truthy value if at least one element in bs is
truthy; otherwise returns #£. Hint: use or

(my-length xs) returns the length of the list xs

List Recursion 12

Recursive Accumulation Pattern Summary

sum + 0
product * 1
min-list min +inf.0
max-list max -inf.0
all-true? and #t

some-true? or #f
my-length (A (fst subres) (+ 1 subres)) 0

List Recursion 13

it's

Define these using Divide/Conquer/Glue %

> (snoc 11 '"(7 2 4))
(7 2 4 11)

> (my-append '(7 2 4) '(5 8))
(7 2 4 5 8)

> (append-all '"((7 2 4) (9) () (5 8)))
(72 4 9 5 8)

> (my-reverse '(5 7 2 4))
(4 2 7 5)

List Recursion 14

Mapping Example: map-double your

(map-double ns) returns a new list the same length as
ns in which each element is the double of the corresponding
elementin ns.

> (map-double (list 7 2 4))

'(14 4 8)

(define (map-double ns)
(1f (null? ns)

; Flesh out base case

; Flesh out general case

))

List Recursion 15

Understanding map-double

(map-double ' (7 2 4))

7 2 4 ——e
% Je— 2 *ng—— 2 * Je— 2
14 4 8 1 >e

We'll call this the mapping pattern

List Recursion 16

i i it's
Generalizing map-double Expressing mapF your
. turn
(mapF (list V1 V2 .. Vn)) as an accumulation —
(define (mapF xs)
Vi V2 eee Vn L) (1f (null? xs)
null
p p p ((N (fst subres)
(F) (F) (F)) 5 Flesh this out
(Fvi) (Fv2) (Fvn) (first xs)
eee ® (mapF (rest xs)))))
(define (mapF xs)
(1f (null? xs)
null
(cons (F (first xs))
(mapF (rest xs)))))
List Recursion 17 List Recursion 18
'| . | , . , HZ@
Some Recursive Listfuns Need Extra Args Filtering Example: filter-positive fo
N
(filter-positive ns) returnsanew list that contains
(define (map-scale factor ns) only the positive elements in the list of numbers ns, in the
(i1f (null? ns) same relative order as in ns.
null > (filter-positive (list 7 -2 -4 8 5))
(cons (* factor (first ns)) (7 8 5)
(map-scale factor (rest ns)))))
(define (filter-positive ns)
(1f (null? ns)
; Flesh out base case
; Flesh out recursive case
))
List Recursion 19 List Recursion 20

Understanding filter-positive

(filter-positive (list 7 -2 -4 8 5))

7 2| |4 8 5| e
e e g e e
>0 >0 (>0) >0 >0
! | | | |
#t # X # X #t #t
v v 2
/ 8 5| ——e

We’'ll call this the filtering pattern

List Recursion 21

Generalizing filter-positive

(filterP (list V1 V2 .. Vn))

74 V2 Xyl Vn ——0
prg e e
\P) P P
#t # X #t

v 17

Vi eee ——> Vn| —|—@

(define (filterP xs)
(1f (null? xs)
null
(1f (P (first xs))
(cons (first xs) (filterP (rest xs)))
(filterP (rest xs)))))

List Recu

it's
Expressing £i1terP as an accumulation %

(define (filterP xs)
(1f (null? xs)
null
((lambda (fst subres)

) ; Flesh this out
(first xs)

(filterP (rest xs)))))

List Recursion 23

