
Sum-of-Product	(SOP)	Datatypes	in	SML	

CS251	Programming	Languages	
Spring	2018	
Lyn	Turbak	
	

Department	of	Computer	Science	

Wellesley	College	

Mo>va>ng	SOP	example:	geometric	figures	

Suppose	we	want	to	represent	geometric	figures	like	circles,	rectangles,	

and	triangles	so	that	we	can	do	things	like	calculate	their	perimeters,		

scale	them,	etc.	(Don’t	worry	about	drawing	them!)	

How	would	you	do	this	in	Java?		In	Python?		

These	are	so-called	sum	of	products	data:	
•  Circle,	Rec,	and	Tri	are	tags	that	dis>nguish	which	one	in	a	sum	

•  The	numeric	children	of	each	tag	are	the	product	associated	with	that	tag.	

		

 Sum-of-Product Datatypes in SML 2

SML’s	datatype	for	Sum-of-Product		types	

�datatype figure =
 Circ of real (* radius *)
| Rect of real * real (* width, height *)
| Tri of real * real * real (* side1, side2, side3 *)

val figs = [Circ 1.0, Rect (2.0,3.0), Tri(4.0,5.0,6.0)]
 (* List of sample figures *)

val circs = map Circ [7.0, 8.0, 9.0]
 (* List of three circles *)

3 Sum-of-Product Datatypes in SML

Func>ons	on	datatype	via	paSern	matching	

�(* Return perimeter of figure *)
fun perim (Circ r) = 2.0 * Math.pi * r
 | perim (Rect(w,h)) = 2.0 * (w + h)
 | perim (Tri(s1,s2,s3)) = s1 + s2 + s3

(* Scale figure by factor n *)
fun scale n (Circ r) = Circ (n * r)
 | scale n (Rect(w,h)) = Rect (n*w, n*h)
 | scale n (Tri(s1,s2,s3)) = Tri (n*s1, n*s2, n*s3)

�- val perims = map perim figs
val perims = [6.28318530718,10.0,15.0] : real list

-  val scaledFigs = map (scale 3.0) figs
val scaledFigs = [Circ 3.0,Rect (6.0,9.0),
 Tri (12.0,15.0,18.0)] : figure list

4 Sum-of-Product Datatypes in SML

Op>ons	

datatype 'a option = NONE | SOME of 'a

SML	has	a	built-in	option	datatype	defined	as	follows:		

-  NONE
val it = NONE : 'a option

-  SOME 3;
val it = SOME 3 : int option

-  SOME true;
val it = SOME true : bool option

5 Sum-of-Product Datatypes in SML

Sample	Use	of	Op>ons	

-  fun into_100 n = if (n = 0) then NONE else SOME (100 div n);
val into_100 = fn : int -> int option

- List.map into_100 [5, 3, 0, 10];
val it = [SOME 20,SOME 33,NONE,SOME 10] : int option list

- fun addOptions (SOME x) (SOME y) = SOME (x + y)
= | addOptions (SOME x) NONE = NONE
= | addOptions NONE (SOME y) = NONE
= | addOptions NONE NONE = NONE;
val addOptions = fn : int option -> int option -> int option

-  addOptions (into_100 5) (into_100 10);
val it = SOME 30 : int option

-  addOptions (into_100 5) (into_100 0);
val it = NONE: int option

6 Sum-of-Product Datatypes in SML

Op>ons	and	List.find		
(* List.find : ('a -> bool) -> 'a list -> 'a option *)
- List.find (fn y => (y mod 2) = 0) [5,8,4,1];
val it = SOME 8 : int option

- List.find (fn z => z < 0) [5,8,4,1];
val it = NONE : int option

7 Sum-of-Product Datatypes in SML

Thinking	about	op>ons	

What	problem	do	op>ons	solve?	

	

How	is	the	problem	solved	in	other	languages?		

	

8 Sum-of-Product Datatypes in SML

Crea>ng	our	own	list	datatype	

�datatype 'a mylist = Nil | Cons of 'a * 'a mylist

val ints = Cons(1, Cons(2, Cons(3, Nil))) (* : int mylist *)

val strings = Cons("foo", Cons ("bar", Cons ("baz", Nil)))
(* : strings mylist *)

fun myMap f Nil = Nil
 | myMap f (Cons(x,xs)) = Cons(f x, myMap f xs)
(* : ('a -> 'b) -> 'a mylist -> 'b mylist *)

val incNums = myMap (fn x => x + 1) ints
(* val incNums= Cons (2,Cons (3,Cons (4,Nil))) : int mylistval *)

val myStrings = myMap (fn s => "my " ^ s) strings
(* val myStrings = Cons ("my foo", Cons ("my bar", Cons ("my
baz",Nil))): string mylist *)

9 Sum-of-Product Datatypes in SML

Binary	Trees	

10 Sum-of-Product Datatypes in SML

SML	bintree	datatype	for	Binary	Trees	

datatype 'a bintree =
 Leaf
 | Node of 'a bintree * 'a * 'a bintree
 (* left subtree, value, right subtree *)

val int_tree= Node(Node(Leaf,2,Leaf),
 4,
 Node(Node(Leaf, 1, Node(Leaf, 5, Leaf)),
 6,
 Node(Leaf, 3, Leaf)))

11 Sum-of-Product Datatypes in SML

bintree	can	have	any	type	of	element	

val string_tree = Node(Node (Leaf,"like",Leaf),
 "green",
 Node (Node (Leaf,"and",Leaf),
 "eggs",
 Node (Leaf,"ham",Leaf)))

12 Sum-of-Product Datatypes in SML

Coun>ng	nodes	in	a	binary	tree	

fun num_nodes Leaf = 0
 | num_nodes (Node(l,v,r)) = 1 + (num_nodes l) + (num_nodes r)

- num_nodes int_tree;
val it = 6 : int

-  num_nodes string_tree;
val it = 5 : int

13 Sum-of-Product Datatypes in SML

height

(* val height = fn : 'a bintree -> int *)
(* Returns the height of a binary tree. *)
(* Note: Int.max returns the max of two ints *)

fun height Leaf = 0
 | height (Node(l,v,r)) = 1 + Int.max(height l, height r)

- height int_tree;
val it = 4 : int

-  height string_tree;
val it = 3 : int

14 Sum-of-Product Datatypes in SML

sum_nodes

(* val sum_nodes = fn : int bintree -> int *)
(* Returns the sum of node values in binary tree of ints *)

fun sum_nodes Leaf = 0
 | sum_nodes (Node(l,v,r)) = (sum_nodes l) + v + (sum_nodes r)

- sum_nodes int_tree;
val it = 21 : int

15 Sum-of-Product Datatypes in SML

inlist

(* val inlist = fn : 'a bintree -> 'a list *)
(* Returns a list of the node values in in-order *)

fun inlist Leaf = []
 | inlist (Node(l,v,r)) = (inlist l) @ [v] @ (inlist r)

- inlist int_tree;
val it = [2,4,1,5,6,3] : int list

-  inlist string_tree;
val it = ["like","green","eggs","and","ham"] : string list

16 Sum-of-Product Datatypes in SML

This	returns	a	list	of	elements	as	they	are		

Encountered	in	an	in-order	traversal	of	a	tree.	
	We	could	also	list	them	via	a	pre-order	or	
	post-order	traversal.	

map_tree

(* val map_tree = fn : ('a -> 'b) -> 'a bintree -> 'b bintree *)
(* maps function over every node in a binary tree *)

fun map_tree f Leaf = Leaf
 | map_tree f (Node(l,v,r)) = Node(map_tree f l, f v, map_tree f r)

- map_tree (fn x => x*2) int_tree;
val it = Node (Node (Leaf,4,Leaf),8,
 Node (Node (Leaf,2,Node (Leaf,10,Leaf)),12,
 Node (Leaf,6,Leaf))) : int bintree

-  map_tree (fn s => String.sub(s,0)) string_tree;
val it = Node (Node (Leaf,#"l",Leaf),#"g",
 Node (Node (Leaf,#"e",Leaf),#"a",
 Node (Leaf,#"h",Leaf))) : char bintree

17 Sum-of-Product Datatypes in SML

fold_tree

(* val fold_tree = fn : ('b * 'a * 'b -> 'b) -> 'b
 -> 'a bintree -> 'b *)
(* binary tree accumulation *)

fun fold_tree comb leafval Leaf = leafval
 | fold_tree comb leafval (Node(l,v,r)) =
 comb(fold_tree comb leafval l, v, fold_tree comb leafval r)

- fold_tree (fn (lsum,v,rsum) => lsum + v + rsum) 0 int_tree;
val it = 21 : int

- fold_tree (fn (lstr,v,rstr) => lstr ^ v ^ rstr) " " string_tree;
val it = " like green eggs and ham " : string

18 Sum-of-Product Datatypes in SML

Binary	Search	Trees	(BSTs)	on	integers		

19 Sum-of-Product Datatypes in SML

Binary	Search	Tree	inser>on	
fun singleton v = Node(Leaf, v, Leaf)

(* val insert: int bintree -> int -> int bintree *)
fun insert x Leaf = singleton x
 | insert x (t as (Node(l,v,r))) =
 if x = v then t
 else if x < v then (* using < here means that tree
 elts *must* be ints *)
de(insert x l, v, r)
 else Node(l, v, insert x r)

fun listToTree xs = foldl (fn (x,t) => insert x t)
 Leaf xs

- val test_bst = listToTree [4,2,3,6,1,7,5];
val test_bst = Node (Node (Node (Leaf,1,Leaf),
 2,
 Node (Leaf,3,Leaf)),
 4,
 Node (Node (Leaf,5,Leaf),
 6,
 Node (Leaf,7,Leaf))) : int bintree

20 Sum-of-Product Datatypes in SML

Binary	Search	Tree	membership		

(val member: ''a -> ''a bintree -> bool *)
fun member x Leaf =
 | member x (Node(l,v,r)) =

- ﻿val test_member = map (fn i => (i, member i test_bst))
[0,1,2,3,4,5,6,7,8];
val it = [(0,false),(1,true),(2,true),(3,true),(4,true),
(5,true),(6,true),(7,true), (8,false)] : (int * bool) list

21 Sum-of-Product Datatypes in SML

Balanced	Trees	(PS7)		
BSTs	are	not	guaranteed	to	be	balanced.		

But	there	are	other	tree	data	structures	that	do	guarantee	balance:	

AVL	trees,	Red/Black	trees,	2-3	trees,	2-3-4	trees.		

In	PS7	you	will	experiment	with	2-3	trees.		

22 Sum-of-Product Datatypes in SML

Benefits	of	datatype	and	paSern	matching	

•  SML’s	datatype	declara>on	allows	concisely	defining	complex	sum-of-

product	types,	including	trees	with	lots	of	different	node	types.	E.g.,	here	is	
a	tree	dataytype	you’ll	see	in	PS8:		

23 Sum-of-Product Datatypes in SML

•  SML’s	paSern	matching	on	datatype	values	greatly	simplifies	the	

processing	of	complex	sum-of-product	trees.		

•  These	features	make	SML	an	ideal	language	for	programming	data	

structures	a	la	CS230/CS231	and	for	metaprogramming	(because	program	

ASTs	are	just	complex	sum-of-product	trees)	

