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THE BOBCAT REFERENCE MANUAL

Important changes from the initial draft:

• In addition to being well-typed, a legal Bobcat program must not define the same global
variable or function name twice (see Section 3). This constraint considerably simplifies the
interpretation and compilation of Bobcat programs.

• error expressions now carry an explicit type. This significantly simplifies type checking.
See the modified form for error in the grammar of Fig. 1 and the typing rules of Fig.2.

• The [relop] rule in Figure 2 has changed to allow comparison of two values at any base type
(see Section 3 for a discussion). This obviates previously presented standard library functions
for comparing characters (charLt, charLeq, charGeq, charGt).

• The return type of a function can be any expression type. This includes base types (as before)
but also includes the new void type keyword (new).  Function declarations not declaring an
explicit return type effectively desugar into ones with a void return type (see Section 2.3).

• The previous typing rules were missing a rule for a top level program. This has now been
added (the [globalLet] rule of Fig. 3), along with some text in Section 3 explaining it.

• The grammar for the top-level (program) let construct has been extended to allow multiple
semi-colon separated expressions in the body. The previously posted grammar was also
missing an end keyword.

• An ambiguity in the specification of the parsing of if, while, for, and assignment
expressions has been resolved in Section 2.2.

• A new desugaring for top-level programs is given in Section 2.3. This supersedes the
desugaring presented in the previous version of the Bobcat reference manual.

1. Overview

Bobcat is an extension to Kitty that supports global, first-order, mutually recursive functions and
three primitive data types (booleans, characters, and integers). The key differences between
Bobcat and Kitty are as follows:

1. Whereas all Kitty values are integers, Bobcat supports three types of values: booleans,
characters, and integers. It is illegal to use values of one type in a context where a value
of another type is expected. This property is enforced by static type checking rules (see
Section 3), which can be used to reject ill-typed programs at compile-time. Only the
semantics of well-typed programs are defined.

2. Bobcat allows the definition of collections of mutually recursive functions that can refer
to global variables. Function parameters and results have explicitly declared types.

3. Bobcat supports a library of standard functions that subsume and extend Kitty’s nullary
and unary operators.

4. Bobcat has a simple construct for aborting the program upon encountering an error.

Like Kitty, Bobcat is essentially a subset of Appel’s Tiger language.1 The key features of Tiger
not supported by Kitty are (1) record and array datatypes and (2) block structured function
declarations.

                                                
1 We say “essentially” because while Bobcat’s functions are take from Tiger, Bobcat has a few features that Tiger
does not have. In particular:  Bobcat supports characters as a disintct datatype, which Tiger does not; (2) Bobcat has
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We will use Bobcat as our source language in our second pass at exploring the stages of
compilation. Once we complete this second pass, we will consider extensions to Bobcat that
support additional Tiger features.

2. Syntax

2.1 Lexical Conventions

The lexical conventions for Bobcat are exactly the same as those of the Kitty language.  See the
Kitty Reference Manual for details.

2.2. Grammar

Syntactically well-formed core Kitty programs are those derivable from the grammar in Figure 1.
We use the following conventions in the grammar:

• Bold unitalicized names are terminal symbols that stand for classes of tokens.
• Plain unitalicized names are terminal symbols that stand for single tokens with those names.
• Italicized names are non-terminal symbols in the grammar, whose meanings are defined by

productions.
• Italicized annotations following the hash mark (#) are comments and not part of the grammar.
• If toks is a sequence of tokens, then {toks} stands for zero or more repetitions of toks.
• If toka1 and toka2 are sequences of tokens, then {toks1 [toks2]} stands for zero or more

repetitions of toks1 that are separated by toka2.

Note that Bobcat variable and function declarations are not separate by semi-colons.2

The grammar in Figure 1 is ambiguous. The ambiguities are removed by the following rules,
which are the same as those in Kitty3:

Precedence: The precedence of operators from highest to lowest is as follows (operators on
the same line have the same precedence):

unary minus (negation)
*,  /, %
+,  -
<,  <=,  =,  <>,  >=,  >
&
|

Associativity: The operators *,  \, %, +,  -,  &, and | are all left-associative. E.g., 1 – 2 + 3
is parsed as if it were written (1 – 2) + 3. The relational <,  <=,  =,  <>,  >=,  and > are all non-
associative. E.g., 1 < 2 = 3 is not a legal expression, even though the explicitly grouped
versions (1 < 2) = 3 and 1 < (2 = 3) are legal expressions.

                                                                                                                                                            
several standard library functions not suported by Tiger; (3) Bobcat’s error construct does not appear in Tiger; (4)
Bobcat’s program syntax is more lenient than Kitty’s; and (5) Bobcat inherits from Kitty a few non-Tiger features
(constants, writes).

2 Kitty declarations were separated by semi-colons, but this was a mistake on my part based on a misreading of the
Tiger grammar. Tiger declarations are not separated by any symbols, either.
3 The Kitty reference manual did not list the weak precedence of keywords rule, but it should have!
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# Prog derives Bobcat expressions
Prog → let {GlobalDecl} in {Exp[;]} end # top-level program

# The following expxressions are inherited from Kitty
# Exp derives Bobcat expressions
Exp → () # the literal for “no value”
Exp → intlit # as specified by the lexical conventions for integer literals
Exp → charlit # as specified by the lexical conventions for character literals
Exp → id # as specified by the lexical conventions for identifiers
Exp → Const
Exp → -Exp # unary minus operator
Exp → writes (stringlit)
Exp → Exp Binop Exp
Exp → id := Exp # assignment
Exp → if Exp then Exp else Exp
Exp → if Exp then Exp
Exp → let {VarDecl} in {Exp [;]} end
Exp → while Exp do Exp
Exp → for ident := Exp to Exp do Exp
Exp → (Exp ; {Exp[;]}) # sequence expression, parentheses required
Exp → (Exp) # grouping via optional parentheses

# The following expressions are new to Bobcat
Exp → id ({Exp [,]}) function application
Exp → error ExpTy stringlit

# VarDecl derives variable declarations
VarDecl → var id := Exp
VarDecl → var id : BaseType := Exp

# VarDecl derives variable declarations
FunDecl → function id ({Formal[,]}) : ExpType = Exp
FunDecl → function id ({Formal[,]}) = Exp

# Formal derives formal
# argument declarations
Formal → id : BaseType

# GlobalDecl derives global
# variable or function decls
GlobalDecl → VarDecl
GlobalDecl → FunDecl

# ExpType derives expr. types
ExpType → BaseType
ExpType → void

# BaseType derives base types
BaseType → bool
BaseType → char
BaseType → int

# Const derives constants
Const → minint
Const → maxint
Const → true
Const → false

# Binop derives binary operators
Binop → Arithop
Binop → Relop
Binop → Logop

Arithop → +
Arithop → -
Arithop → *
Arithop → /  # integer division
Arithop → %  # integer modulus

Relop → <
Relop → <=
Binop → =
Binop → <> # not equals
Relop → >=
Relop → >

Logop → &  # short circuit and
Logop → |  # short circuit or

Figure 1: Bobcat Grammar
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Dangling Else: The presence of both if-then and if-then-else expressions in a language
introduces an ambiguity as to which if expression an else clause belongs. The Kitty
convention (as in many other languages) is that an else clause belongs to the innermost if
expression enclosing it. Thus, the expression

if E1 then if E2 then E3 else E4

is parsed as if it were written

if E1 then (if E2 then E3 else E4)

Weak precedence of keyword expressions: It is assumed that keyword expressions (if,
while, for) bind less tightly than binary operator expressions. In other words, the final
expression of a keyword expression should be interpreted as extending as far right as
possible. For these purposes, assignment is considered a keyword expression. For example:

Expression parses as and not as
if E1 then E2 + E3 if E1 then (E2 + E3) (if E1 then E2) + E3
if E1 then E2
      else E3 + E4

if E1 then E2
      else (E3 + E4)

(if E1 then E2
       else E3) + E4

x := E1 + E2 x := (E1 + E2) (x := E1) + E2
while E1 do x := E2 + E3 while E1 do x := (E2+E3) (while E1 do x := E2)+E3
for i := E1 to E2 do
  x := E3 +E4

for i := E1 to E2 do
  x := (E3 +E4)

(for i := E1 to E2 do
  x := E3) +E4

2.3. Desugaring

It is inconvenient to write an explicit let … in … end for every top-level Bobcat program.
Following the conventions of the C programming language, Bobcat supports the following
desugaring for Bobcat programs:

GlobalDecl1 . . . GlobalDecln ⇒  let GlobalDecl1 . . . GlobalDecln in main() end

That is, a Bobcat program can be written as a non-empty sequence of declarations, one of which
is assumed to be a declaration of a function main of type () → void.  Executing the program is
equivalent to invoking main with no arguments. It is also convenient to be able to process single
Kitty expressions as if they were Bobcat programs.  For this reason, Bobcat also supports the
following desugaring for top-level expressions into Bobcat programs:  Exp ⇒ let in Exp  end

Several of the Bobcat expressions in Figure 1 can be viewed as desugaring into other
expressions, as illustrated in the following table:

Source language expression Expression after desugaring
for I1 := E1 to E2 in E3 let var I1 := E1

    var I2 := E2 (* Assume I2 fresh *)
 in while (I1 <= I2) do
      (E3; I1 := I1 + 1)
end

if E1 then E2 if E1 then E2 else ()
E1 & E2 if E1 then E2 else false
E1 | E2 if E1 then true else E2
- E1 0 - E1
writes("abc...") (writec('\a');

 writec('\b');
 writec('\c');
 ...)
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Note that the desugaring for E1 | E2 is different than that used in Kitty. This is because the
operands of | in Kitty are integers, while the operands of | in Bobcat must be boolean. For
example,  2 | 3  is a legal Kitty program that should evaluate to 2, but it is an illegal Bobcat
program.

Unlike Tiger, Bobcat allows the void expression type to be explicitly written in a program.
Because of this, the function declarations that do not list an explicit return type, e.g., those of the
form

id (id1: BaseType1, … , idn : BaseTypen),

effectively desugar into declarations with void as an explicit return type:

id (id1: BaseType1, … , idn : BaseTypen) : void   

3. Static Semantics

The static semantics of a language describes those properties that can be determined at compile-
time – i.e., without executing the program. A Bobcat  program has to satisfy two static properties
in order to be considered valid:

• The global variable and function names in a program must be pairwise distinct and also
distinct from any standard library function name. For instance, the name f cannot be
declared twice as a global variable and/or function, nor can the name abs be declared as a
global variable or function (because it is already in the standard library).

• A program must be well-typed according to the typing rules shown in Figures 2 and 3.
These are explained further below.

The typing rules for Bobcat refer to types in the following domains:

BT ∈ BaseTy = {bool, int, char}

ET ∈ ExpTy =  BaseTy  ∪ {void}

FT ∈ FunTy  = BaseTy * × ExpTy

The metavariables BT, ET, and FT will be used to range over elements of these types. The
notation (BT1, … BTn) → ET will be used to stand for a function type in FunTy.

The typing rules use type environments, which are finite partial mappings from variable names
to BaseType ∪ FunctionType. If A is a type environment, then the notation A(x) refers to the base
type or function type associated with variable x in the environment (if there is such a type).
The notationA[x1 := T1, …, xn := Tn] denotes a type environment that, for all i in the range [1..n]
binds xi to Ti  (a base type or function type) and binds every y not in the set { x1  ,… , xn }to A(y).

The typing rules involve four different kinds of judgements:

• The judgement ◊ Prog claims that program Prog is statically valid in terms of its types.

• The judgement A  > Exp : ET claims that expression Exp has type ET with respect to type
environment A..
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• The judgement A  ♣ Decl1 … Decln ♦ A’ claims that type environment A can be extended
to type environment A’ by processing a sequence of declarations, where each DeclI is either
a single variable declaration or a mutually recursive set of function declarations.

• The judgement A  ♥ Decl ♠ A’ claims that A can be extended to A’ by processing a
“single” declaration Decl (which may be a single variable declaration or a mutually recursive
set of function declarations).

The “claims” made by judgements are not necessarily true. For instance, the following is a well-
formed judgement that is false: {}  > 1 : bool. (Here, {} stands for the empty type
environment.)  A judgement is considered true if and only if there is derivation (i.e., a finite
proof tree) consisting of instantiations of the typing rules in which every hypothesis of a rule
instantiation is the conclusion of some other rule instantiation. An expression Exp is said to be
well-typed with respect to a type environment A if there exists an expression type ET such that
the  judgement A  > E : ET  can be derived from instantiations of the typing rules. A program
Prog is said to be well-typed if the judgement ◊ Prog can be derived from instantiations of the
typing rules.

The complete typing rules for Bobcat appear in Figures 2 and 3. The figures show typing rules
only for “core” expressions; expressions that can be derived by desugaring are first assigned to
be desugared before they are type-checked. The [group] rule is included for completeness only
because all the other rules are expressed in terms of the concrete syntax of Bobcat. There would
be no need for the [group] rule in the abstract syntax for Bobcat.

The [relop] rule specifies that the Bobcat relational operators can be used to compare any two
values that have the same base type. For instance, all of the following expressions are legal in a
well-typed Bobcat program:  5 < 3, ‘h’ < ‘q’, true < false. However, any attempt to
compare values of different types, as in  5 < ‘q’,  false < ‘q’, or true < 3 ,  is a type error.
Such operators, which have different meanings at different types, are said to be overloaded.

Some of the typing rules have side conditions, which are conditions that must be true in order for
the rule to be applicable. The use of a metavariable in a side condition implies that the side
condition is only true if the metavariable can be properly instantiated. For example, the following
side condition appears in the [varRef] and [assign] rules:

where A(id) = BT

This side condition means that the type associated with id in the type environment A must be a
base type, and that this base type will be named BT when used elsewhere in the rule.
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[nothing] -----------   [intLit] --------------   [charLit] -----------------
         A  > () : void          A  > intlit : int            A  > charlit : char

[trueConst] ----------------   [falseConst] ----------------
             A  > true : bool                A  > false : bool

[maxintConst] ----------------   [minintConst] ----------------
                 A  > maxint : int                A  > minit : int

       A  > Exp1 : int ; A  > Exp2 : int
[arithop] -----------------------------------------

       A  > Exp1 Arithop Exp2 : int

A  > Exp1 : BT; A  > Exp2 : BT
[relop] -----------------------------------------

       A  > Exp1 Relop Exp2 : bool

[varRef] -------------- where A(id) = BT
                              A  > id : BT

A  > Exp : BT
          [assign] --------------------------- where A(id) = BT

 A  > id := Exp : void

A  > Exp1 : bool ; A  > Exp2 : ET ; A  > Exp3 : ET
[if] ----------------------------------------------------

       A  > if Exp1 then Exp2 else Exp3 : ET

         A  > Exp1 : bool ; A  > Exp2 : void
[while] --------------------------------

       A  > while Exp1 do Exp2 : void

    ∀ i∈[1..n] . A  > Expi : ETi
[seq] --------------------------------

    A  > (Exp1;...; Expn): ETn

         A  ♣ VarDecl1 ...VarDeclk ♦ A’; ∀ i∈[1..n] . A’  > Expi : ETi
 [localLet] ------------------------------------------------------------------

    A  > let VarDecl1 ...VarDeclk in Exp1,...,Expn end : ETn

            ∀ i∈[1..n] . A  > Expi : BTi
[funApp] ------------------------------  where A(id) = (BT1 ,..., BTn) → ET

             A  > id (Exp1,...,Expn) : ET

A  > Exp : ET
[group] ----------------     [error] -------------------------------
         A  > (Exp) : ET              A  > error ET  (stringlit) : ET

Figure 2: Typing Rules,  Part 1
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∀ i∈[1..n] . Ai-1 ♥ GlobalDecli ♠ Ai

[decls] ---------------------------------------------

 A0 ♣ GlobalDecl1 ... GlobalDecln ♦ An

             A > Exp : BT
[varDeclUntyped] ------------------------------------

               A ♥ var id := Exp ♠ A[id := BT]

                  A > Exp : BT
[varDeclTyped] ---------------------------------------

                A ♥ var id : BT := Exp ♠ A[id := BT]

∀ i∈[1..n] . A’ > Expi : ETi
 [funDecls] ------------------------------------------------------------------

            A ♥ function  id1(id(1,1):BT(1,1),...,id(1,k1):BT(1,k1) ):ET1 = Exp1
                ...
                function  idn(id(n,1):BT(n,1),...,id(n,k1):BT(n,kn) ):ETn = Expn ♠ A’

where A’ = A[id1 := (BT(1,1),...,BT(1,k1)) → ET1,
                         ...,
                         idn := (BT(n,1),...,BT(n,kn)) → ETn]

           A stdlib ♣ GlobalDecl1 ...GlobalDeclk ♦ A’; A’  > Exp : void
 [gloabalLet] ---------------------------------------------------------------

        ◊ let GlobalDecl1 ...GlobalDeclk in Exp end

where A stdlib is a type environment for the Bobcat standard library

Figure 3: Typing Rules,  Part 2

4. Dynamic Semantics

The dynamic semantics of a language describes the run-time meaning of phrases in the language.
The dynamic semantics of Bobcat is similar to that of Kitty, except for the following differences:

• Meaning is only ascribed to valid Bobcat programs. In contrast, every Kitty expression has a
meaning. This simplifies the implementation of Bobcat interpreters and compilers, which
may be predicated on the assumption that only valid programs will be interpreted/compiled.
For example, when adding two values, a Bobcat interpreter need not check that both are
integers, since this fact has already been proven by the type checker.

• A Bobcat expression can denote one of four kinds of values: a boolean, a character, an
integer, or “no value”. In contrast, a Kitty program can only denote two kinds of values: an
integer or “no value”.
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• Bobcat supports the declaration and application of global, mutually recursive functions. The
meaning of a function application id(E1, ..., En)  is determined via the following steps:

1. Evaluate the actual parameters E1,...,En from left to right  into values V1,...,Vn . (In
a valid program, it is guaranteed all such values will be of base type.)

2. Suppose that there is a corresponding global function declaration

      function id(id1:E1, ..., idn:En): T = Ebody   

(In a valid program, it is guaranteed that there is such a declaration, and it is unique.)
Evaluate the body expression Ebody. in a context where the formal parameters id1,
..., idn stand for the actual parameter values V1,...,Vn and any non-shadowed
global variables stand for their global value. In the case where T is a base type, the
result of the evaluation of body will be a value of type T, and this value should be
returned as the value of the function application. In the case where T is void, both the
body and the function application will have no value.

• The Bobcat standard I/O library readc function (see Section 5) always returns a character. In
contrast, the Kitty readc unary operator returns an integer, where an integer in the range 0-
255 is interpreted as a character with that ASCII value and –1 is interpreted as indicating the
end-of-file.  Since there is no end-of-file character, Bobcat needs a separate standard I/O
library function eof() to detect the end-of-file condition.

• For any Kitty expression E, if the Bobcat program let in E end is valid, then this program
has the same behavior as the Kitty expression as long as E does not contain an invocation of
readc().

5. Standard Library Functions

Top-level Bobcat programs are assumed to be type-checked and executed relative to an “top-
level environment” that includes bindings for functions in a standard library.  Separating the
specification for the standard library  from that of the core language simplifies both the
description and implementation of the language. It also provides a modular way to extend the
language with new library functions without having to change the specification or
implementation of the core language.

This section documents the functions in the Bobcat standard library. They are loosely organized
into categories of related functions:

Mathematical Functions

abs (x: int): int
Returns the absolute value of x.

expt (base: int, power: int): int
Returns the result of raising base to power. Signals an error if power < 0.

sqr (x: int): int
Returns the result of squaring x.
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Logic Functions

not (b: bool): bool
Returns the logical negation of b.

and (b1: bool, b2: bool): bool
Returns the logical conjunction of b1 and b2.  Unlike the short-circuit conjunction operator &,
and always evaluates both arguments.

or (b1: bool, b2: bool): bool
Returns the logical disjunction of b1 and b2. Unlike the short-circuit disjunction operator |,
or always evaluates both arguments.

boolToInt (b: bool): int
Returns 0 for true and 1 for false.

intToBool (i: int): bool
Returns true for 0 and false for any other integer.

Character Functions

chr (i: int): char
Returns the character corresponding to ASCII value i.

ord (c: char): int
Returns the ASCII value of character c.

digitToInt (d: char): int
If d is a digit character, returns the numerical value of the digit; otherwise signals an error.

intToDigit (i: int): char
If i is a number in the range [0..9], returns the digit character corresponding to the number;
otherwise, signals an error.

isDigit (c: char): bool
Returns true if c is a digit, and false otherwise.

isLetter (c: char): bool
Returns true if c is a letter, and false otherwise.

isLowercase (c: char): bool
Returns true if c is a lowercase letter, and false otherwise.

isUppercase (c: char): bool
Returns true if c is an uppercase letter, and false otherwise.

isWhitespace (c: char): bool
Returns true if c is a whitespace character, and false otherwise.

lowercase (c: char): char
If c is an uppercase character returns the corresponding lowercase character; otherwise
returns c.

uppercase (c: char): char
If c is a lowercase character returns the corresponding uppercase character; otherwise returns
c.
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Input/Output Functions

eof : () → bool
Returns true if the standard input stream is empty (i.e., if performing readc would signal an
error) and returns false otherwise.

readc : () → char
Consumes and returns the next character from standard input stream. Signals an error if
standard input is empty.

readi : (int) → int

readi(default) first consumes any whitespace characters (spaces, tabs, and newlines) in
the standard input stream. If the first non-whitespace character is a digit, or a minus sign
followed by a digit, the maximal sequence of characters interpretable as an integer is
consumed, and the integer represented by these characters is returned. However, if the first
non-whitespace character is not the first character of an integer representation, it is not
consumed, and the value default is returned. Thus, default serves as an indication of the
failure of readi to read an integer. It is helpful to parameterize over this value because
different failure values are suitable in different contexts.4 For instance, 0, -1, minint, and
maxint are all typical values of the argument to readi.

writec : (char) → void
writec(c) writes character c to standard output stream.

writei : (int) → void
writei(i) writes a string representation of integer I to standard output stream.

6. Examples

6.1 Count

Here is a Bobcat program that counts the number of characters in the standard input stream:

let
  var count := 0
  function inc() = count := count + 1
in
  while not(eof()) do (readc(); inc());
  writei(count)
end

By the program desugaring in Section 2.3, this can also be written as:

var count := 0

function inc() = count := count + 1

function main () : void =
  (while not(eof()) do (readc(); inc());
   writei(count))

                                                
4 Of course, any attempt to encode a failure value as an integer necessarily means that there can be an ambiguity
between actually reading that integer and reading no integer. In more advanced languages, this problem can be dealt
with by either returning a compound data structure (such as ML’s int option) that can represent failure as a value
distinct from the integers, or by raising an exception when no integer is read.
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Since mutually recursive functions can be in any order, this can be rewritten as:

var count := 0

function main () : void =
  (while not(eof()) do (readc(); inc());
   writei(count))

function inc() = count := count + 1

However, both of the following are invalid: the first because inc is unbound in the body of main,
due to the fact that the count variable declaration breaks up the mutual recursion between main
and inc; and the second because the variable count is unbound in the bound of inc.

/* Invalid program 1 */
function main () : void =
  (while not(eof()) do (readc(); inc());
   writei(count))

var count := 0

function inc() = count := count + 1

/* Invalid program 2 */
function main () : void =
  (while not(eof()) do (readc(); inc());
   writei(count))

function inc() = count := count + 1

var count := 0

6.2 Even/Odd

Here is a program that uses the classic mutually recursive definitions of functions that compute
the evenness and oddness of an integer:

function main() = writei(test())

function test (): int =
  let var sum := 0
   in for i := 0 to 3 do
          sum := sum + expt(10,2*i) * boolToInt(even(2*i))
                     + expt(10,2*i+1) * boolToInt(even(2*i+1));
      sum
  end

function even (n: int): bool =
  if n = 0 then
    true
  else
    odd(n-1)

function odd (n: int): bool =
  if n = 0 then
    false
  else
    even(n-1)
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6.3 Chartable

Below is a program that prints a table of the characters whose ASCII values are between 1 and
128.

function isSpecial(c: char): bool =
  c = '\t' | c = '\n' | c = '\'' | c = '\\'

function specialToChar (c: char): char =
  if c = '\t' then 't'
  else if c = '\n' then 'n'
  else if c = '\'' then '\''
  else if c = '\\' then '\\'
  else (writec(c); error char "is not a special")

function writeChar (c: char): void =
  (writec('\'');
   if isSpecial(c) then
      (writec('\\'); writec(specialToChar(c)))
   else
      writec(c);
   writec('\'')
   )

function main () =
  for i := 0 to 127 do
    (writeChar(chr(i));
     if (i % 8) = 7 then writec('\n') else writec('\t')
     )


