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Wellesley College   ◊   CS301 Compiler Design    ◊   Fall 2000
Handout #04

PROBLEM SET 1
Pseudo-due on Friday, September 15

Really due on Friday, September 29 (along with PS2)
This assignment is worth 200 points.

READING
• Chapter 1 of Appel
• Understand ML code for SLiP interpreters
• Kitty Handout (#03)
• SML/NJ Configuration Manager (CM) Handout (#05)

SUBMISSION DETAILS

Each team should turn in a single hardcopy submission packet for all problems by slipping it
under Lyn’s office door by 5pm on the due date. The packet should include (1) a written solution
to Problem 1; (2) your final version of the file Eval.sml from Problem 3; (3) your final version
of the file Test.sml from Problem 3 (which should include your programs and ASTs from
Problem 2); (4) transcripts of your test cases for Problem 3; and (5) any auxiliary files you
created for Problem 3. Your hardcopy submission packet should also include a header sheet for
each team member (see the end of this assignment for the header sheet), and should indicate
where the softcopy submission can be found.

Your softcopy submission should consist of your local version of the kitty program directory
described in Problem 3. .

PROBLEM 1 [15]

Part a[5]  Suppose you are given the following:

• a Java-to-C-in-Scheme compiler  (that is, a Java-to-C compiler written in Scheme.)
• a Scheme-in-Pentium interpreter.
• a C-to-Pentium-in-Pentium compiler.
• a Pentium-based computer.

Describe a sequence of steps you can perform to execute a given Java program on the computer.

Part b[10]  Suppose you are given the following

• a C-in-MIPS interpreter.
• a C-to-MIPS-in-C compiler
• a MIPS -based computer

i. Describe how to generate a C-to-MIPS-in-MIPS compiler.

ii. After you successfully complete part i, you accidentally delete the C-in-MIPS interpreter.
Describe how you can still execute any C program.
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PROBLEM 2 [35]

The purpose of this problem is to get you familiar with the Kitty programming language before
you attempt to implement an interpreter for it in Problem 3.

For each of the following two program specifications:

(1) Write a Kitty  program that implements the specification.

(2) Express the Kitty program as an abstract syntax tree using the ML datatypes for Kitty ASTs
(see Section 3.1).  When your Kitty interpreter (Problem 3) is working, you should add your
ASTs to the file Test.sml and check to see that they work as expected.

Specification 1: Word Scanner [15]

Implement a Kitty program that writes to the output stream the “words” that it finds in the input
stream, writing one word per line of output. For the purpose of this program, a “word” is defined
to be a maximal length sequence of (lowercase or uppercase) alphabetic characters. Any non-
word characters, such as digits, punctuation (including underscores and quotation marks), or
whitespace, should be treated as word delimiters and ignored.

For example, given the following input stream

“I bought 10 cans of WD-40 yesterday for $36.97!”, Abby said. “Isn’t that
great?”

the output stream should be

I
bought
cans
of
WD
yesterday
for
Abby
said
Isn
t
that
great
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Specification 2: Character Table Generator [20]

Implement a Kitty program that generates (i.e., writes to the output stream) the following table
mapping ASCII values to characters:

0:'^@'  1:'^A'  2:'^B'  3:'^C'  4:'^D'  5:'^E'  6:'^F'  7:'^G'
8:'^H'  9:'\t'  10:'\n' 11:'^K' 12:'^L' 13:'^M' 14:'^N' 15:'^O'
16:'^P' 17:'^Q' 18:'^R' 19:'^S' 20:'^T' 21:'^U' 22:'^V' 23:'^W'
24:'^X' 25:'^Y' 26:'^Z' 27:'^[' 28:'^\' 29:'^]' 30:'^^' 31:'^_'
32:' '  33:'!'  34:'"'  35:'#'  36:'$'  37:'%'  38:'&'  39:'\''
40:'('  41:')'  42:'*'  43:'+'  44:','  45:'-'  46:'.'  47:'/'
48:'0'  49:'1'  50:'2'  51:'3'  52:'4'  53:'5'  54:'6'  55:'7'
56:'8'  57:'9'  58:':'  59:';'  60:'<'  61:'='  62:'>'  63:'?'
64:'@'  65:'A'  66:'B'  67:'C'  68:'D'  69:'E'  70:'F'  71:'G'
72:'H'  73:'I'  74:'J'  75:'K'  76:'L'  77:'M'  78:'N'  79:'O'
80:'P'  81:'Q'  82:'R'  83:'S'  84:'T'  85:'U'  86:'V'  87:'W'
88:'X'  89:'Y'  90:'Z'  91:'['  92:'\\' 93:']'  94:'^'  95:'_'
96:'`'  97:'a'  98:'b'  99:'c'  100:'d' 101:'e' 102:'f' 103:'g'
104:'h' 105:'i' 106:'j' 107:'k' 108:'l' 109:'m' 110:'n' 111:'o'
112:'p' 113:'q' 114:'r' 115:'s' 116:'t' 117:'u' 118:'v' 119:'w'
120:'x' 121:'y' 122:'z' 123:'{' 124:'|' 125:'}' 126:'~' 127:'^?'

Your program is not allowed to use readc or readi – that is, you cannot read any input file to
help generate the output. Strive to make your code as simple and concise as possible.

Notes:

• The columns are aligned via tabs (the \t character), and the rows are separated by newlines
(the \n character).

• The Kitty modulus operator % is helpful for deciding where to end the current row.

• You don’t need to do anything special to print the two-character sequences beginning with ^.
That is, the Kitty invocation writec(1) will print the two characters ^A on the output stream.

• You do need to do something special to print the “escaped” outputs \t, \n, \’, and \\.
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PROBLEM 3: Kitty Interpreter [150]

Implement an interpreter to evaluate programs written in the Kitty language. As explained
below, your task is to flesh out the definition of the Kitty interpreter in the file Eval.sml and test
it using the test cases in Test.sml (which you will extend with more test cases). All filenames
mentioned here refer to files in the directory ~cs301/download/kitty on the CS file server
(a.k.a. cs.wellesly.edu, a.k.a. nike.wellesly.edu). You should make a copy of this
directory in your personal filespace

There are a number of modules already written for you that will simplify your task.  These, along
with additional  notes and gotchas to watch out for, are described in the following subsections
and appendices.

Before beginning this problem, you should carefully study the interpreters for Appel’s straight-
line programming language (SLiP) handed out in class.

3.1 Abstract Syntax

You should use the definition of Kitty abstract syntax in AST.sml, reprinted below.

structure AST =

 struct

  type id = string  (* Simple choice for now *)

  datatype exp = Nothing
               | IntLit of Int32.int
               | CharLit of char
               | Const of const
               | VarRef of id
               | NullApp of nullop
               | UnApp of unop * exp
               | BinApp of binop * exp * exp
               | Assign of id * exp
               | Let of decl list * exp
               | If of exp * exp * exp
               | While of exp * exp
               | Seq of exp list

  and decl = Decl of id * exp

  and const = True | False | Maxint | Minint

  and nullop = ReadC

  and unop = Not | ReadI | WriteC | WriteI

  and binop = Add | Sub | Mul | Div | Mod
            | Lt | Leq | Eq | Neq | Geq | Gt

(* Helpful auxiliary functions *)

  fun declName (Decl(name,defn)) = name
  fun declDefn (Decl(name,defn)) = defn

  fun declNames decls = map declName decls
  fun declDefns decls = map declDefn decls

end
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3.2 Desugaring

Most Kitty constructs map onto the above abstract syntax in a straightforward way.  However,
you should assume that the following desugaring translations take place before the translation
into abstract syntax. These desugarings simplify the abstract syntax by reducing the number of
cases that need to be handled without reducing the expressive power of the source language.

Source language expression Expression after desugaring
1 for I1 := E1 to E2 in E3 let var I1 := E1

    var I2 := E2 (* Assume I2 fresh *)
 in while (I1 <= I2) do
      (E3; I1 := I1 + 1)
end

2 if E1 then E2 if E1 then E2 else ()
3 E1 & E2 if E1 then E2 else false
4 E1 | E2 let var I := E1 (* Assume I fresh *)

 in if I then I else E2
end

5 - E1 0 - E1
6 writes("abc...") (writec('\a');

 writec('\b');
 writec('\c');
 ...)

In the above desugaring table, subscripted versions of E stand for any expression and subscripted
versions of I stand for any identifier.

Rule (1) shows how for loops desugar into while loops. Since the upper bound of the loop
should only be evaluated once, its value is named (by I2) outside the while loop in the desugared
version.  In order to avoid possible name capture problems, it is assumed that I2  is “fresh” – i.e.,
does not appear elsewhere in the program.

Rule (2) shows that an if-then expression desugars into an if-then-else expression whose else
clause is the “no value” expression, ().

Rules (3) and (4) show how the short-circuit boolean conjunction and disjunction operators
desugar into conditional expressions.

Rule (5) is the desugaring of Kitty’s unary minus into binary subtraction.

Rule (6) is not technically a rule but an example that shows how printing a string via Kitty’s
writes operator can be desugared into s sequence of invocations of writec on the individual
characters in the string.
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3.3 Evaluation

The main task in implementing the interpreter is to flesh out the definition of the structure Eval
within the file Eval.sml. You are provided with a skeleton of this file, shown below.

structure Eval : sig
                   val evaluate : AST.exp -> Int32.int option
                   exception EvalError of string
                 end
= struct
   local open AST in

    exception EvalError of string
    fun error str = raise EvalError(str)

    (* Put the rest of your declarations here *)

   end (* end local *)
  end (* end struct *)

You should include whatever extra declarations you find necessary to implement the interpreter
in this file. (If you feel that certain declarations would be more logically organized if they
appeared in a separate structure in a separate file, that’s OK too.)

The above structure exports only two entities: the evaluate function and the EvalError
exception.  All other declarations within the Eval structure are effectively hidden by this
signature. While this is all that is necessary to use the interpreter, it makes it impossible to
individually test any declarations you add to the structure.  If you want to refer to your declared
functions and values in the SML read-eval-print for the purposes of debugging, you will need to
add appropriate type declarations to the signature in Eval.sml.

3.3.1 Return Values

As indicated by the signature of the Eval structure, interpretation is embodied in a single
evaluate function that maps a Kitty AST to an Int32.int option – that is, to either the ML
value NONE or the ML value SOME(n) where n is a 32-bit integer.  (See Section 4 for details about
integer sizes.) The former is used to represent the evaluation of Kitty expressions that have no
value (i.e., the “no value” expression (), assignment expressions, while expressions, for
expressions, if-then expressions, and if-then-else expressions whose arms have no value). The
latter is used to represent the integer value produced by all other expressions.

3.3.2 Stream Effects

In addition to potentially returning an integer value, evaluating a Kitty expression may also have
an effect on the state of the current input stream and the current output stream. The current input
stream is modified by evaluation of the readc and readi operators. The current output stream is
modified by evaluation of the writec, writei, and writes operators.  These stream effects can
be implemented by using the functions of the SimpleIO stream library described in Appendix C.

3.3.3 Dynamic Errors

In addition to returning a value or modifying a stream, evaluation of a Kitty expression can also
signal an error in the case where an illegal situation is encountered. Examples of such situations
include:

Unbound variables: An attempt to find the value of or assign to a variable which is not in the
scope of a binding declaration is an error. For example, the following expression has an
unbound variable fo due to a misspelling of foo:
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let foo := 2 in fo + 1 end

No value where a value is expected: Many contexts require a subexpression to have an
integer value, and it is an error if the subexpression has no value. For instance, the argument
expressions of unary and binary operators must produce values.  As an example, the
expression not (a := 1) should signal an error because not expects an integer argument but
the assignment expression returs no value.

An integer value where no value is expected: Other contexts require a subexpression to have
no value, and it is an error if the subexpression has an integer value. For instance, the bodies
of while and for loops should have no value.  As an example, evaluating the following while
loop should signal an error because the body n – 1 returns an integer value.

while n > 0 do n - 1

Certain well-formedness conditions of a Kitty program cannot be tested dynamically during
evaluation. For example, the Kitty specification requires that in an if-then-else expression, the
then and else branches must either both return no value or both return an integer value. An
interpreter cannot dynamically check this constraint, since it will evaluate only one branch of the
conditional.  We will have to wait for static type-checking to verify such constraints.

The above discussion does not exhaustively list all error situations. You should think carefully
about what all possible error situations are, and ensure that your interpreter signals an error in
every situation where an error situation can be detected dynamically.

To support signaling errors, the Eval structure declares an EvalError exception and an error
function that raises EvalError exceptions. The error function takes a single string argument
describing the error.  For example, the interpreter can indicate that the variable name var is an
unbound variable via the following function invocation:

error(“Unbound variable “ ^ var) (* ^ concatenates strings *)

Calling error halts execution of the interpreter. If the interpreter is invoked via one of the
testing functions described in section 3.4, an error message that includes the error string will be
printed.

3.3.4 Memory and Scope

Evaluating a subexpression that occurs in a Kitty program requires knowing which variables can
be referenced in that subexpression and what the state of those variables is.  A first cut at
representing the state of Kitty variables would be to use the same approach taken in the SLiP
interpreter: model the state of variables by a “memory” table that maps variable names (i.e.,
strings)  to their integer values. It turns out that this approach will work fine on Kitty programs
that satisfy the following two restrictions:

(1) A variable is never referenced out of the scope of its declaration.

(2) Two logically distinct variables have distinct names. In other words, each variable name is
declared exactly once in any given program. (Of course, once declared, a variable can be
referenced or assigned to any number of times.)

For such programs, the evaluation of an expression needs to take the current memory as an
argument, and needs to return the updated memory in addition to the resulting value of the
expression.  As in the SLiP interpreter, the memory could either be an explicit argument and
result (as in the functional style) or could be an implicit argument and result (as in the imperative
style).
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However, for programs not satisfying both of the above two restrictions, an interpreter based on
this approach can behave incorrectly.  As an example of an expression violating restriction (1),
consider the following sequence expression:

(let x := 5 in x := x * 2 end; x)

According to the scoping rules of Kitty, the final reference to x is an unbound variable. Yet in a
SLiP-like interpreter that models memory by mapping strings to integer values, the binding x →
10 would still be available when the final x is encountered, and the integer value 10 would be
incorrectly returned as the value of the sequence expression.

As an example of an expression violating restriction (2), consider the following:

let y := 1
 in (let y := 20 in y) + y
end

Here the same name y has been given to the two logically distinct variables declared in the two
let expressions. It is easy to determine the value of this expression by so-called “alpha-
renaming”, in which every logically distinct variable is given a different name:

let y1 := 1
 in (let y2 := 20 in y2) + y1
end

It is clear from the alpha-renamed version that the expression should have the value 21.
However, a SLiP-like interpreter would not be able to distinguish the different ys in the original
version. The memory would contain a single binding for y, which would be set to 20 by the inner
declaration. As a result, such an interpreter would return 40 as the result of the original
expression.

The problem with the SLiP-like approach is that it represents the state of variables by a single
global memory that maps variable names to their current values.  This does not handle the fact
that different variables may have the same name, nor does it handle the fact that variables are
effectively undeclared when the scope of their declaration ends.

In terms of addressing this issue, it is suggested that you approach it in two stages:

Stage 1: In this stage, make the simplifying assumption that all Kitty programs satisfy
conditions (1) and (2) from above. With these assumptions, you can implement a SLiP-like
interpreter that works on a large and important class of Kitty programs. You should follow
the SLiP interpreter by using the StringTable structure in StringTable.sml (See
Appendix A) to represent the state of variable bindings. Test and debug your program on
programs satisfying restrictions (1) and (2) (all the examples in Test.sml satisfy these
restrictions).

Stage 2: In this stage, you should modify your interpreter from Stage 1 so that it correctly
handles all Kitty programs, even those not satisfying restrictions (1) and (2).  There are many
ways to do this. Below are some different approaches you can consider, though you are
welcome to develop your own approach. This is a situation where it is very important to
carefully list and compare your options before you begin implementing a solution!

The Alpha-Renaming Approach: Given any Kitty AST, first statically check it for
unbound variables.  That is, walk through the syntax tree keeping track of which
variables are in scope, and signal an error if an undeclared variable is references or
assigned to.  Note that such a static check can detect more errors than the dynamic check
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described in Section 3.3.3. If the program has no unbound variables, then rewrite it to an
alpha-renamed version that satisfies restriction (2). You can then run the alpha-renamed
version of the program on your interpreter from Stage 1.

The Environment/Store Approach: (This is the approach typically taken in such
interpreters.) One way to fix the problem of the SLiP-like approach is to split memory
into two separate components:

1.  A store that maps abstract memory locations (rather than variable names) to
integer values.

2. An environment that maps each variable name to a location in the store.

In this approach, the store represents the single global memory of the computation. It is
passed around like the memory table in the SLiP interpreter; that is, the store must be
appropriately updated by the evaluation of any expression.

However, in order to model the scoping of variables, the environment is passed around in
a different way. Entering a let expression can add new environment bindings for the
declared variables, but exiting the let expression must somehow remove these bindings.
(In the functional style, no actual “removal” needs to be performed since any reference to
the outer environment is unchanged by the creation of an inner environment.)

Note that environments address both of the restrictions stated at the beginning of this
subsection. By modeling which names are in scope, restriction (1) is no longer necessary
since unbound variables can be dynamically detected by the interpreter.  By allowing the
same name to map to different store locations in different environments, restriction (2) is
no longer necessary. Indeed, the name-to-location mapping performed by an environment
can be viewed as a kind of on-the-fly alpha-renaming.

To implement this approach, use the IntTable structure in IntTable.sml (see Appendix
A) and the Store structure in Store.sml (see Appendix B).  This assumes that memory
locations in the store are represented as integers – something that is in fact true for the
given implementation of the Store structure.

Stack-based Approaches: The environment/store approach mentioned above is very
flexible and will work for programming languages that are much more complex than
Kitty. The fact that Kitty declarations obey a stack discipline makes other approaches
possible.

Instead of having both an environment and a store, it is possible to use just an memory
that maps variable names to a stack of mutable integer cells (created via ML’s ref
construct). Declaring a variable involves pushing a new mutable integer cell onto the
stack associated with that variable. All references and assignments in the scope of this
variable will be performed on the top cell in the stack. The cell must be popped of the
stack when the scope of the corresponding variable is exited.

Alternatively, it is possible to use a memory that associates with each variable name a
single reference cell, but this reference cell contains a stack of integers rather than a
single integer. Yet another possibility is a memory that maps variable names to mutable
stacks of integers.

If you take one of the stack based approaches, you should implement a Stack structure
that has the operations (e.g. empty, push, pop, top) that you need.
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3.4 Testing

3.4.1 Testing Functions

The structure Test in the file Test.sml contains some tools for testing your Kitty interpreter. It
contains the ASTs for a few simple Kitty programs, as well as the following testing functions:

val evalKittyAST : AST.exp -> Int32.int option
evalKittyAST ast evaluates the given expression abstract syntax tree ast using the
standard input and output streams. It returns the result of evaluating the expression after it
prints any output produced during the evaluation.

   val evalKittyASTIn : AST.exp -> string -> Int32.int option
evalKittyASTIn ast inputFilename is like evalKittyAST except that it uses the file
designated by inputFilename as the input stream.

val evalKittyASTOut : AST.exp -> string -> Int32.int option
evalKittyASTIn ast outputFilename is like evalKittyAST except that it uses the file
designated by outputFilename as the input stream.

val evalKittyASTInOut : AST.exp -> string -> string -> Int32.int option
evalKittyASTInOut ast inputFilename outputFilename is like evalKittyASTIn
except that it uses the file designated by outputFilename as the output stream.

Let’s consider some concrete examples using the above testing functions. The Test structure
contains a value writeIntsAST that is an AST for a Kitty program that writes the integers from
1 to 100 to the output stream. It also contains a value sumAST that writes to the output stream the
sum of all the integers in the input stream.

The evalKittyAST function is designed for programs like writeIntsAST that don’t depend on
the input stream:

- evalKittyAST writeIntsAST;

---------------Kitty Output---------------
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

-----------------ML Output----------------
val it = NONE : Int32.int option

(In this and all following examples, we assume that we have opened the Test structure via open
Test so that we don’t have to qualify the names of any components of this structure.) In this
example, the contents of the output stream appears after the dotted line labeled “Kitty Output”,
and the ML result of the program (NONE) appear after the dotted line labeled “ML Output”.
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If we would like the output stream to be written to a file rather than printed to standard output,
we can use evalKittyASTOut instead:

- evalKittyASTOut writeIntsAST "out.txt";

---------------Kitty Output---------------

-----------------ML Output----------------
val it = NONE : Int32.int option

In this case, no Kitty output appears since it has been redirected to the file named out.txt.  That
file now contains the numbers from 1 to 100, formatted in ten lines, as in the previous example.

The function evalKittyASTIn is used when a non-trivial input stream is required. For example,
we can use the file out.txt from above as the input for sumAST, which sums all of the numbers in
the file:

- evalKittyASTIn sumAST "out.txt";

---------------Kitty Output---------------
5050
-----------------ML Output----------------
val it = NONE : Int32.int option

Finally, evalKittyASTInOut can be used in situations where we want to specify files for both
the input an output streams.

Instead of using an input file, it is possible to specify input via the standard input stream (i.e., by
typing at the terminal.) However, there are a few problems with this. One problem is that the
input that you type will appear in the section labeled Kitty Output; a better user interface with
separate windows for input and output would be needed to fix this problem. A second problem is
that you need a way to indicate the end of the input. Typing Ctrl-d (that is, simultaneously
depressing the “Control” and “d” keys) indicates the end to the current input stream.  However,
in many interfaces, you also need to type the Return key after this, (because the input is
buffered, and no keystrokes on the current line are read until the Return is pressed.)  The
situation is trickier if you are attempting to do this within Emacs, because then Emacs attempts
to interpret Ctrl-D in its own way. In this case, the magical keystroke combination is Return
Ctrl-D Return. Here is an example of using standard input to specify input. User input is in
bold to distinguish input from output, and Ctrl-D and Return (which don’t actually have a visible
consequence) has been shown in bold italics.

- evalKittyAST sumAST;Return

---------------Kitty Output---------------
1 2 3Return
4 5 6Return
7 Ctrl-D Return
21
-----------------ML Output----------------
val it = NONE : Int32.int option

Because of the complications with standard input, it is recommend you put all input in files
instead.
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3.4.2 Testing Your Interpreter

While testing is an important phase in the development of any program, it is especially important
for interpreters and compilers.  These are complex programs that implement detailed
specifications for source programming languages. The combination of the complexity of the
programs and the sheer number of details in the specifications make it difficult to correctly
implement every detail. Extensive testing will uncover bugs that simply never arise in cursory
tests.

An especially important reason to test interpreters and compilers is that the users of these
programs are themselves programmers in the source language. These programmers would like an
assurance that any bugs they encounter in their programs are their own doing and not bugs in the
programming language implementation on which they rely.

For these reasons it is expected that you will test your interpreters and compilers this semester on
suites of extensive test cases. The fact that many assignments will involve the same language and
that the languages are layered (i.e., later languages build upon earlier ones) means that you
should be able to reuse any test programs you develop for one assignment in later assignments.

The file Test.sml contains the ASTs for just a few Kitty programs. It is expected that you will
add a significant number of new ASTs to test aspects of the interpreter that are not exercised by
the existing test programs. In particular, you should include the programs from Problem 2,
programs that test features not tested by existing programs, and programs that test error cases.

As of this writing, there isn’t yet a front-end for Kitty that you can use to avoid creating ASTs by
hand. A Kitty front-end will be made available in the near future, and it will simplify the testing
process.

To avoid manual testing of programs after every modification to the interpreter, it is a good idea
to automate the testing process. At the very least, you can write an ML function that
appropriately invokes evalKittyAST and friends on all your test programs. Even better would be
automatically comparing the output of such programs to the expected output.  Such a comparison
tool will be made available later in the semester.

4.  Other Libraries

In addition to the modules described in the appendices, there are many other available modules
you can use in your coding. The structure ListOps (in file ListOps.sml in the kitty directory)
exports a number of useful higher order list functions.  The Standard ML Basis Library supplies
many standard functions for manipulating integers, characters, strings, lists, and many other
datatypes; several of these are useful in the implementation of the Kitty interpreter. For
documentation on the structures in the Standard ML Basis Library, see:

   http://cs.wellesley.edu/~cs301/doc/basis/pages/sml-std-basis.html
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Of particular interest are:

• the Char.chr and Char.ord functions, which allow converting between SMLNJ characters
and integers. (By the way, SMLNJ character literals are written like #”A” , #”\n” ,  etc.)

• The Int and Int32 structures. Int is the structure for manipulating 30-bit integers (the size of
values in the unadorned int type) and Int32 is the structure for manipulating 32-bit integers
(which have type Int32.int). You should use the latter for the values returned by your
interpreter. You can convert between the two types via the following functions:

Int.fromLarge : Int32.int -> int
Int.toLarge : int -> Int32.int

Binary integer operators that are normally infix can be written as prefix if they are explicity
qualified. For instance,  the int addition 1 +  2 can also be written as Int.+(1,2) , but the
corresponding Int32 addition can only be written Int32.+(1,2). Note that SMLNJ  integer
literals are interpreted as members of int or Int32, as the context requires. It turns out that
equality should always be tested via infix =; prefix forms of = are not defined, and ML’s
polymorphic equality does the “right thing” for different types.

• The String structure contains useful string operations.
• The List and ListPair structures contain useful list manipulation functions.

5.  Compiling and Running the Kitty Interpreter

In order to compile and run the Kitty  interpreter, you first need to start an sml-cm session. (See
Handout #05 for details on this.) Within your sml-cm session, execute the following to compile
your ML program:

CM.make’("Kitty.cm");

Here, Kitty.cm is a configuration manager file that indicates the dependencies among the SML
files. (It corresponds to makefiles or projects in other development environments.)

In most cases, executing the above will spit out a long sequence of syntax and type-checking
error that the compiler has found in your program.  You will need to fix all of these before you
can test your program.  Once you have made the type-checker happy, you can use the functions
from Section 3 to test your interpreter.

The examples in Section 3 assume that you have first executed

open Test;

within the SML interpreter. This makes it possible to use the components of the Test structure
without qualified names.

Beware of the following gotcha: if you edit your ML files, you will not only need to re-execute
the CM.make’ command from above, but you will also need to re-execute the open command as
well. A common bug is to execute CM.make’ without re-executing open. In this case, you will
have recompiled your files, but you will still be testing the old version rather than the new
version!
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APPENDIX A: The StringTable and IntTable modules

The StringTable structure (in file StringTable.sml) implements an immutable table data
structure that maps string keys to values of any type. (In a given table, all values must have the
same type, but the value type can be different between two tables).  The IntTable structure (in
file IntTable.sml) is similar, except that all keys are integers.

Below are the signature of the StringTable structure and specifications for its components. The
signature and specifications for IntTable are similar, except that string keys are everywhere
replaced by integer keys.

StringTable :
  sig
    type 'b table
    val empty : 'b table
    val bind : (string * 'b * 'b table) -> 'b table
    val extend : (string list * 'b list * 'b table) -> 'b table
    val lookup : (string * 'b table) -> 'b option
    val unbind : (string * 'b table) -> 'b table
    val remove : (string list * 'b table) -> 'b table
    val bindingsToTable : (string * 'b) list -> 'b table
    val keys : 'b table -> string list
    val values : 'b table -> 'b list
  end

A value of type ‘b table is an immutable table mapping string keys to values of type ‘b. (Here
‘b is a type variable that can be instantiated to any type.) A table is immutable in the sense that
once created, its bindings never change. Operations can create new tables but never modify an
existing one.

empty denotes an empty ‘b table for any type ‘b.

bind(key,value,tbl) returns a new table that includes the binding key→value in addition to

all bindings of tbl. Any existing binding for key in tbl is shadowed by key→value.

extend(keys,values,tbl) returns a new table that includes corresponding bindings between
keys and values in addition to all bindings of tbl. Any  existing binding for keys in tbl are
shadowed by the new bindings.

lookup(keys,tbl) returns SOME(value) if tbl contains the binding key→value. If there is no
binding for key, lookup returns NONE.

unbind(key,tbl) returns a new table that includes all bindings of tbl except for a binding for
key.

unbind(keys,tbl) returns a new table that includes all bindings of tbl except for bindings for
keys.

bindingsToTable(keyValuePairs) returns a table whose bindings consist of all the bindings
specified by the list of pairs keyValuePairs.

keys(tbl) returns a list of all keys for bindings in tbl. Each key is mentioned only once.

values(tbl) returns a list of all values for bindings in tbl. The values are in the same order as
the keys returned by keys(tbl). Because the same value may be bound to more than one key,
the result may contain duplicates.
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APPENDIX B: The Store module

The Store structure (in file Store.sml) implements an immutable store data structure that maps
integer keys (known as locations) to values of any type. (In a given store, all values must have
the same type, but the value type can be different between two stores). Unlike a value of type
IntTable.table, a store does not allow updating location, but only those locations that have been
allocated by the store (via the alloc function).  Each call to alloc generates a fresh location that
does not already exist in the store.

Another difference between stores and integer tables is that an attempt to bind (via put) or
lookup (via get) a non-existent location in a store raises an exception (UnboundLocation). In
contrast, looking up a non-existent key in an integer table returns NONE.

Below are the signature of the Store structure and specifications for its components.

structure Store :
  sig
    type 'a store
    type loc = int
    exception UnboundLocation of string
    val empty : 'a store
    val alloc : ('a * 'a store) -> (loc * 'a store)
    val put : (loc * 'a * 'a store) -> 'a store
    val get : (loc * 'a store) -> 'a
    val locs : 'a store -> int list
    val values : 'a store -> 'a list
  end

A value of type ‘a store is an immutable store mapping abstract locations to values of type ‘a.
A store is immutable in the sense that once created, its bindings never change. Operations can
create new stores but never modify an existing one. In this implementation, locations are
assumed to be integers. The UnboundLocation exception is used to indicate an attempt to get or
put an unallocated location.

empty denotes an empty store.

alloc(init,sto) creates a new store sto' that contains the binding newloc→init in addition
to all bindings of sto, where newloc is a fresh location that does not to appear in sto. alloc
returns the pair (newloc, sto').

put(loc,value,sto) returns a new store that includes all bindings of sto except for the binding
for loc, which is replaced by the binding loc→value.  An UnboundLocation exception is
raised if sto does not already contain a binding for loc.

get(loc,sto) returns value if sto contains the binding loc→value. If there is no binding for
loc, an UnboundLocation exception is raised

locs(sto) returns a list of all allocated locations in sto. Each location is mentioned only once.

values(sto) returns a list of all values for locations in sto. The values are in the same order as
the keys returned by locs(sto). Because the same value may be bound to more than one
location, the result may contain duplicates.
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APPENDIX C: The SimpleIO module

The structure SimpleIO (in the file named SimpleIO.sml) provides redirectable text-based input
and output. All reading operations implicitly manipulate the current input stream and all writing
operations implicitly manipulate the current output stream. The current input and output streams
default, respectively, to the standard input and output streams. But the current input stream can
be redirected from a file via fromFile and the current output stream can be redirect to a file via
toFile.

structure SimpleIO :
  sig
    val readChar : unit -> char option
    val readInt : unit -> Int32.int option
    val writeChar : char -> unit
    val writeInt : Int32.int -> unit
    val fromFile : string -> (unit -> 'a) -> 'a
    val toFile : string -> (unit -> 'a) -> 'a
  end

readChar() returns SOME(c), where c is the next character in the current input stream.
readChar returns NONE if the end of the current input stream has been reached (i.e., all
characters of the current input stream have been consumed.)

readInt() first consumes all whitespace up to the next non-whitespace character (or end of
input stream). If the next non-whitespace character c is a digit or a minus sign followed by a
digit, returns SOME(n), where n is the integer value of the maximal sequence of digits
(possibly prefixed with a minus sign) in the input stream beginning with c. In this case, all
characters in the representation of the returned integer are consumed. In all other cases,
readInt returns NONE without consuming from the stream any characters other than the initial
whitespace characters.

writeChar(c) writes c to the current output stream.

writeInt(i) writes to the current output stream the sequence of digits (possibly prefixed a
single minus sign) corresponding to i. *)

fromFile inputFilename thunk executes thunk in a context where the file specified by
inputFilename serves as the current input stream.

toFile outputFilename thunk executes thunk in a context where the file specified by
outputFilename serves as the current output stream.


