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Wellesley College   ◊   CS301 Compiler Design    ◊   October 4, 2000
Handout #07

PROBLEM SET 3

Due on Friday, October 13

READING
• Appel, Sections 3.1-3.2 (Recursive Descent Parsing)
• Fokker’s article “Functional Parsers”
• Hutton and Meijer’s article “Monadic Parsing in Haskell”

OVERVIEW

The purpose of this problem set is to help you gain familiarity with the practice of monadic
parsing. You will using the monadic parsing combinators presented in class to construct a parser
for Kitty.

This assignment has one problem worth a total of 150 points. The problem is organized into
several parts.  The result of all the parts will be a single file Parser.sml implementing the Kitty
parser.

COLLABORATION DETAILS

You should break up into three teams of two members each, subject to the following constraints:

• You should not work with the same partner as on PS1 and PS2.

• Kate and Holly cannot work together on this assignment (since both have seen monadic
parsers before, and we should “spread around” their expertise.

SUBMISSION DETAILS

Each team should turn in a single hardcopy submission packet for all problems by slipping it
under Lyn’s office door by 5pm on the due date. The packet should include (1) your final version
of the file Parser.sml; (2) your test files for parsing; (3) transcripts showing how your parser
works on your test cases; and (5) any auxiliary files you created. Your hardcopy submission
packet should also include a header sheet for each team member (see the end of this assignment
for the header sheet), and should indicate where the softcopy submission can be found.

Your softcopy submission should consist of your local versions of the kitty/parser and
kitty/test program directories described below.
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PROBLEM 1 [150]

Overview

In this problem you will implement and test a monadic parser for Kitty.  Your parser should
having the following behavior:

• For any syntactically legal Kitty program, it should return an abstract syntax tree for that
program.

• For any illegal Kitty program, the parser should reject the program.  Ideally, the parser should
report why the program is illegal. However, sophisticated error reporting is beyond the scope
of this parser; instead, we will use crude indications of the source of parsing errors.

The specification of Kitty syntax can be found in the Kitty Reference Manual (Handout #03). In
particular, pay attention to the grammar specification in Figure 1 on page 3 of this manual. Note:
the sample programs in previous versions of the manual contained several bugs, which have been
corrected in the most recently posted version. In particular: (1) the var keyword for variable
declarations was missing in previous versions and has been added; and (2) missing semi-colons
have been added and extraneous semi-colons have been removed.

What You Need

Start the problem by making copying the following directories and files to your local file system.
You should preserve the relative positions of directories when you make your local copies.

• Make a local copy of the directory ~cs301/download/kitty/parser.

• Make a local copy of the directory ~cs301/download/kitty/utils.

• Make a local copy of the directory ~cs301/download/kitty/test. (The test files in this
directory are corrected versions of previous test files that supersede the previous versions.)

• Copy the most recent versions of Scanner.sml and Token.sml from
~cs301/download/kitty/scanner to your local copy of this directory.

It is also assumed that:

• Your local version of the ~cs301/download/kitty directory contains AST.sml from
Problem Set 1, as well as your working evaluator from that problem set.

• Your local version of the ~cs301/download/kitty/scanner directory contains your
working Kitty lexical analyzer (Kitty.lex.sml) from Problem Set 2.

Documentation

Your task is to flesh out the skeleton file parser/Parser.sml so that it implements a Kitty
parser. The skeleton file contains a number of predefined functions that will simplify your task;
these are documented in Appendix A.

You will be using the ML monadic parsing library presented in class to implement your parser.
Documentation of this library appears in Appendix B. The library is implemented in the file
parser/MonadicParser.sml.
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Compiling and Testing

You can compile your Kitty parser by executing the following in the SML interpreter.

CM.make’(“Parser.cm”);

As usual, you may want to name this command via a small function name to avoid retyping the
whole command. E.g.:

fun p() = CM.make’(“Parser.cm”);

Before testing your parser, you will probably want to increase ML’s default print depth and
length as follows:

Compiler.Control.Print.printDepth := 1000;(* or some other large number *)
Compiler.Control.Print.printLength := 1000;

You can test your Kitty parser via one of the following two functions within the Parser structure:

val parseString : string -> AST.exp
Returns the abstract syntax tree of the expression corresponding to all the tokens in the
given string. Raises an exception if the tokens cannot be parsed into an expression, giving
an indication of why this is so.

val parseFile : string -> AST.exp
Like parseString, but parses the tokens in the contents of the file named by the given
string.

Both of the above functions will use the lexical analyzer that is in scanner/Kitty.lex.sml,
which presumably is your working scanner from Problem Set 2. Please contact me if your PS2
scanner is not working, as it is necessary to have a working scanner in order to test your parser.

Below are a few examples of the above testing functions in action:

- Parser.parseString "2 * 3 * 4";
val it = BinApp (Mul,BinApp (Mul,IntLit 2,IntLit 3),IntLit 4) : AST.exp

- Parser.parseString "2 + 3 * 4";
val it = BinApp (Add,IntLit 2,BinApp (Mul,IntLit 3,IntLit 4)) : AST.exp

- Parser.parseString
  "1 + 2 + 3 < 4 * 5 * 6 & 7 - 8 - 9 = 10 % 4 | 11 / 2 <> 12 & 13 >= 14";
val it =
  Let
    ([Decl
        ("or1",
         If
           (BinApp
              (Lt,BinApp (Add,BinApp (Add,IntLit 1,IntLit 2),IntLit 3),
               BinApp (Mul,BinApp (Mul,IntLit 4,IntLit 5),IntLit 6)),
            BinApp
              (Eq,BinApp (Sub,BinApp (Sub,IntLit 7,IntLit 8),IntLit 9),
               BinApp (Mod,IntLit 10,IntLit 4)),Const False))],
     If
       (VarRef "or1",VarRef "or1",
        If
          (BinApp (Neq,BinApp (Div,IntLit 11,IntLit 2),IntLit 12),
           BinApp (Geq,IntLit 13,IntLit 14),Const False))) : AST.exp



4

- Parser.parseString "let var c := 0 in (c := c + 1; c) end";
val it =
  Let
    ([Decl ("c",IntLit 0)],
     Seq [Assign ("c",BinApp (Add,VarRef "c",IntLit 1)),
          VarRef "c"]) : AST.exp

(* ../test/count.kty contains the following Kitty program:

   /* Count the number of characters in the input stream */
   let var count := 0;
       var c := readc()
   in while c >= 0 do
        (count := count + 1;
         c := readc());
      writei(count)
   end
 *)

- Parser.parseFile "../test/count.kty";
val it =
  Let
    ([Decl ("count",IntLit 0),Decl ("c",NullApp ReadC)],
     Seq
       [While
          (BinApp (Geq,VarRef "c",IntLit 0),
           Seq
             [Assign ("count",BinApp (Add,VarRef "count",IntLit 1)),
              Assign ("c",NullApp ReadC)]),UnApp (WriteI,VarRef "count")])
  : AST.exp

(* ../test/uppercase.kty contains the following Kitty program:

   /* Copy input chars to output chars, capitalizing all letters */
   let var c := readc()
    in while c >= 0 do
         (writec(if c >= 'a' & c <= 'z' /* is c a lower case letter? */
                 then c + 'a' - 'A'     /* Yes -- capitalize it */
                 else c);               /* No -- just copy it */
         c := readc())
   end
  *)

- Parser.parseFile "../test/uppercase.kty";
val it =
  Let
    ([Decl ("c",NullApp ReadC)],
     While
       (BinApp (Geq,VarRef "c",IntLit 0),
        Seq
          [UnApp
             (WriteC,
              If
                (If
                   (BinApp (Geq,VarRef "c",CharLit #"a"),
                    BinApp (Leq,VarRef "c",CharLit #"z"),Const False),
                 BinApp
                   (Sub,BinApp (Add,VarRef "c",CharLit #"a"),CharLit #"A"),
                 VarRef "c")),Assign ("c",NullApp ReadC)])) : AST.exp
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Here are a few simple examples of the kinds of error messages that should be generated by
parseString (similar ones should be generated by parseFile).

(* Missing operator *)
- Parser.parseString "2 * 3 4";

*************************** PARSE ERROR ***************************
Could not parse tokens as a expression:

[INT(2) <2, 3>] [MUL <4, 5>] [INT(3) <6, 7>] [INT(4) <8, 9>]
*******************************************************************

(* Missing var in declaration *)
- Parser.parseString "let c := 1 in c end";

*************************** PARSE ERROR ***************************
Could not parse a prefix of the following tokens as a declarations of a
LET:

[ID("c") <6, 7>] [GETS <8, 10>] [INT(1) <11, 12>] [IN <13, 15>]
[ID("c") <16, 17>] [END <18, 21>]
*******************************************************************

(* Missing := in declaration *)
- Parser.parseString "let var c 1 in c end";

*************************** PARSE ERROR ***************************
Could not parse a prefix of the following tokens as a GETS:

[INT(1) <12, 13>] [IN <14, 16>] [ID("c") <17, 18>] [END <19, 22>]
*******************************************************************

(* Missing rhs definition in let expression *)
- Parser.parseString "let var c := in end";

*************************** PARSE ERROR ***************************
Could not parse a prefix of the following tokens as a rhs of a variable
declaration:

[IN <15, 17>] [END <18, 21>]
*******************************************************************

(* Missing in in let expression *)
- Parser.parseString "let var c := 1 c end";

*************************** PARSE ERROR ***************************
Could not parse a prefix of the following tokens as a IN:

[ID("c") <17, 18>] [END <19, 22>]
*******************************************************************

(* Misspelled end in let expression *)
- Parser.parseString "let var c := 1 in c en ";

*************************** PARSE ERROR ***************************
Could not parse a prefix of the following tokens as a END:

[ID("en") <22, 24>]
*******************************************************************
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Debugging

Monadic parsers can be tricky to debug.  Typical bugs are:

• The parser goes into an infinite regress. See the ML Warts section (below) for an explanation
of some common situations where this can happen.

• The parser returns a lazy list of attempts in an improper order. As discussed in Part (d) below,
many parts of the parser assume an invariant where attempts that consume more tokens
should precede those that consume fewer tokens.

• Uses of choose (rather than plus) that cut off backtracking.  Not that combinators like many,
sepby, and the chain combinators uses choose rather than plus in their definitions.  This
can lead to unexpected results if you are not careful with how attempts are ordered.

Here are some tips for debugging your code:

• Follow the steps (Parts (a) – (f)) described below.  Completely debug one step before moving
to the next one.  A big problem with debugging monadic parsers is that it’s very difficult to
pinpoint where the source of an error is. If you implement the parser in small chunks, you
drastically cut down the number of spots that can be giving rise to errors.

• Using nonZero to annotate you parsers (as described in Part (b)) not only helps find bugs in
the Kitty code you are parsing but can also point out bugs in the parser itself. Any feedback
is helpful!

• The trace combinator can be used to annotate any parser and print out the tokens
encountered when that parser is applied. For instance, if parseExp is defined as

fun parseExp () = body

you can trace every call to the  (parseExp()) parser by redefining it as

fun parseExp () = trace “parseExp” (body)

Due to the backtracking nature of monadic parsers, the order of information printed out by
trace can be counterintuitive. Nevertheless, the information is often very useful.

ML Warts

The fact that ML is a call-by-value language and only allows the definition of recursive functions
and not general recursive values  makes expressing monadic parsers in ML less elegant than in a
language like Haskell (which supports laziness and general recursive values) or even Scheme
(which is call-by-value but at least supports general recursive values). In particular, you will
often want to make two or more parsers mutually recursive. Your first attempt might be:

val parseA = ... parseB ...
val parseB = ... parseA ...

This won’t work in ML because value declarations are sequential, and the reference to parseB
on the first line is not in the scope of the declaration of parseB on the second line.
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To get the correct scoping, it is necessary to convert both parseA and parseB into thunks (i.e.,
nullary functions). Of course, references to the thunks within the function bodies must now be
forced (i.e, applied to zero arguments).

fun parseA () = ... parseB() ...
and parseB () = ... parseA() ...

The use of the keyword and to introduce the second declaration is crucial, because it makes the
two declarations mutually recursive. Replacing and by def would make the function declarations
sequential, which would not achieve the desired scoping.  Accidentally using def instead of and
is a common error that against which you should be vigilant.

The call-by-value nature of ML also leads to problems.  For example, call-by-value evaluation
makes the following parenthesis combinator I  introduced in class abad idea:

  (* parens : 'a parser ->  parser *)
  (* Bad version that uses an unthunked parser *)
  fun parens parser =
        bind (parseTag(LPAREN)) (fn _ =>
         bind parser (fn ans =>
          bind (parseTag(RPAREN)) (fn _ =>
           return ans)))

The reason why this is bad is that it makes it easy to fall into infinite recursions. For example,
consider using the above form of parens to implement a parser for expressions that includes
explicitly parenthesized expressions:

  fun parseExp () = plus (parens(parseExp()) ...

Here, the occurrence of parseExp() on the right is not delayed in any, and so a call to
parseExp() leads to an infinite regress.

This problem can be addressed by modifying parens to accept a parser-returning thunk (i.e.,
function of zero arguments) rather than the parser itself:

  (* parens : (unit 'a parser) ->  parser *)
  (* The parser argument is thunked to help avoid infinite recursions *)
  fun parens parserThunk =
        bind (parseTag(LPAREN)) (fn _ =>
         bind (parserThunk()) (fn ans =>
          bind (parseTag(RPAREN)) (fn _ =>
           return ans)))

Now we can safely define parseExp without the threat of an infinite regress as follows:

fun parseExp () = plus (parens parseExp) ...

The reason that this is safe is that the forcing of the thunk (applying it to zero arguments) is
“protected” or “delayed” by the outermost  (fn _ => ...) in the definition of parens.  Thus,
(parens parseExp) can return a parser without first applying parserExp to zero arguments.

As another example of problems due to call-by-value evaluation, consider seq operator I
introduced in class, which is also a bad idea. Recall that seq is defined as:

fun seq p q = bind p (fn _ => q)

Suppose we try to use seq in our “fixed” version of parens:
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  (* parens : (unit 'a parser) ->  parser *)
  (* The parser argument is thunked to help avoid infinite recursions *)
  fun parens parserThunk =
        seq (parseTag(LPAREN))
            (parserThunk()) (fn ans =>
              seq (parseTag(RPAREN))
                  (return ans)))

Unfortunately, this removes the “delaying” effect of the outermost (fn _ => > ...), and the
invocation (parserThunk()) is again “unprotected”. This will reintroduce an infinite regress in
the parseExp example from above.  For this reason, I strongly recommend that you not use the
seq combinator unless you really know what you’re doing!

These sorts of problems are an artifact of ML’s call-by-value evaluation strategy and would not
be seen in a lazy language like Haskell.

Problem Decomposition

You could flesh out the definition of Parser.sml in one go before testing it, but this would make
debugging very difficult.  Monadic parsers are somewhat fragile programs in which it’s very
easy to encounter unexpected results due to the ordering of arguments in a plus or a choose.
Moreover, the call-by-value nature of ML makes infinite recursions a real threat if you’re not
careful.

It’s a good idea to implement the Kitty parser in small steps, and make sure that each step is
completely working before going on to the next step.  Below is a suggested sequence of steps.
Although you are not required to do the problem in the order suggested, it is strongly
recommended that you debug and test the steps in this order.

The key function you are implementing in all cases is the parseExp function, but you should
define lots of auxiliary functions to enhance readability and simplify testing and debugging.

Part a. Literals [10]

Implement the parsing of Kitty literals: integer literals, character literals, and constants.  It is
helpful (though not necessary) to use the function parseTagFunction provided in Parser.sml.
(See Appendix A for documentation.)

Part b. Simple Applications [20]

Implement the parsing of nullary and unary applications, as well as unary negation and
applications of writes.  Recall that unary application desugars to binary subtraction from zero,
and that writes desugars into a sequence of application of writec.

The parseTag function provided in Parser.sml is helpful for parsing a token with a particular
tag. As in Part (a), you will probably also find it helpful to use parseTagFunction function as
well.

Once you know that you are parsing a particular kind of expression (a unary application, say)
you can use nonZero combinator (described Appendix B) to flag as an error anything that
doesn’t match the expected form.  For instance, consider a monadic parser implementation of the
E → +(E, E) rule for prefix-style integer expressions:

fun parseAdd () =
      bind (parseToken(OP(Add))) (fn _ =>
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       bind (parseToken(LPAREN)) (fn _ =>
        bind (parseExp()) (fn left =>
         bind (parseToken(COMMA)) (fn _ =>
          bind (parseExp()) (fn right =>
           bind (parseToken(RPAREN)) (fn _ =>
            return Binop(Add, left, right)))))))

(Note: this definition uses different conventions than those in Parser.sml.) Here is how the
above parser can be annotated with nonZero to signal an error when the form of the addition
expression is incorrect:

fun parseAdd () =
      bind (parseToken(OP(Add))) (fn _ =>
       bind (nonZero "left paren of add" (parseToken(LPAREN))) (fn _ =>
        bind (nonZero "left argument of add" (parseExp())) (fn left =>
         bind (nonZero "comma of add" (parseToken(COMMA))) (fn _ =>
          bind (nonZero "right argument of add" (parseExp())) (fn right =>
           bind (nonZero "right paren of add" (parseToken(RPAREN))) (fn _ =>
            return Binop(Add, left, right)))))))

The nonZero combinator asserts that when the annotated parser is invoked on a token list, it
should produce a non-empty lazy list of attempts.  If this assertion is violated, then the parser
raises a zeroParse exception with the given string and token list.  The default exception handler
of the top-level parseAllErr function prints out an error with the string and string
representations of the tokens. (Examples of such errors appear on the previous page.)

Note that nonZero should only be used when the parser is “sure” that it is parsing an expression
of a particular type.  For example, nonZero should not be used to annotate
(parseToken(OP(Add))) in the above example. Presumably it would just be one of several
parsers that were tried against a given token stream, and an error shouldn’t necessarily be raised
if the first token is not a +.

Part c. Expessions Beginning with Keywords [55]

Implement the keyword-introduced expressions if, let, while, and for.  Recall that for
desugars into a let expression whose body contains a while loop.

For the desugaring, it will be helpful to use the freshId function in Parser.sml to generate
“fresh” identifiers.  For instance, the first call to freshId("foo") might return ("foo.17");  a
later call might return ("foo.42"). A call to freshId is guaranteed to return an identifier that is
different from every other identifier in the program, including identifiers previously returned by
freshId. This is accomplished by appending a dot and the value of a counter to the given base
string.  The dot guarantees that the identifiers returned by freshId are disjoint from other
program identifiers, since identifiers in user programs cannot contain a dot.

As part of parsing let expressions you will need to (1) parse semi-colon-separated sequences of
variable declarations and (2) parse semi-colon-separated sequences of expressions in the body.
The sepby1 combinator is handy in both cases.

Recall that an if expression has two forms: if E1 then E2 and if E1 then E2 else E3. The
former desugars into the latter where E3 is ().  As noted in the Kitty reference manual, an else
clause binds most tightly to the innermost enclosing if .  Thus, you must parse

if E1 then if E2 then E3 else E4

as if it were explicitly parenthesized as

if E1 then (if E2 then E3 else E4)
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and not as

if E1 then (if E2 then E3) else E4.

As in Part (b), it is helpful to use nonZero to flag syntax errors in these expressions. For parsing
keywords that must be present in an expression, the following parseTagRequired function
provided in Parser.sml is handy:

fun parseTagRequired tag = nonZero (tagToString(tag)) (parseTag tag)

Without binary operators, variable references, and variable assignments, it is difficult to test this
class of expressions on realistic examples.  Nevertheless, you should extensively test each kind
of keyword-introduced expression using simple subexpressions before proceeding.

Part d. Variable References and Assignments [10]

Implement variable references and assignments.  Because both of these expressions begin with
an identifier, it is impossible to distinguish them based on the first token. It turns out that the rest
of the parser depends on an invariant that attempts should be ordered so that ones consuming the
most tokens come first.  Intuitively, this means that when the parser has a choice, it should
choose a parsing that matches more tokens before one that matches fewer tokens.

In the context of variable references and assignments, this means that checking for an assignment
should be done before checking for a variable reference.

Part e. Parenthesized Expressions [5]

Implement the parsing of parenthesized expressions, which includes:
• ()  Nothing
• (E) Explicit grouping
• (E1;…;En) Sequence expressions

If you plan to use a parens combinator, be sure to first study the discussion in the ML Warts
section above.

Part f. Binary Application [50]

• The final, but perhaps trickiest, step is to implement applications of Kitty’s binary operators.
There are several issues here:

• The parser must implement the precedence of the binary operators. Recall that the
precedence, arranged from high to low precedence by levels, is as follows:

*,  /
+,  -
<,  <=,  =,  <>,  >=,  >
&
|

• The parser must implement the associativity of the binary operators. All operators except for
relational operators are left-associative. The relational operators are non-associative.

• The short-circuit conjunction (&) and disjunction (|) operators desugar into if expressions.
Unless you are very careful, it is easy to get accidental infinite regresses.

Here are some hints on how to address these concerns:
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• Use the infix integer expression language discussed in class as a model.  Treat the constructs
in Parts (a) – (e) as “factors” for the binary operators.  Construct a hierarchy like the
expression/term/factor hierarchy that can handle the five levels of precedence in Kitty.

• Use chainl1 to implement left associativity of most of the binary operators.

• Use freshId in the desugaring of |.

• Do not try to use nonZero to detect errors in binary applications – it’s unlikely that you can
use it to do anything reasonable.

Once you complete this part, you should be able to test your parser on any Kitty program.
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Appendix A: Parser.sml

The skeleton file Parser.sml contains the definitions of several functions that you may find
helpful:

val parseTag : token.tag -> unit parser
Returns a parser that consumes the first token if its tag matches the given tag and
otherwise doesn’t consume any token.

val parseTagRequired : token.tag -> unit parser
Like parseTag, but signals a zeroParse exception if the given token is not the first token
of the list to be parsed.

val parseTagFunction : (token.tag ->'a option) -> 'a parser
Given a function f that maps tags to options, returns a parser that applies f to the tag of
the first token encountered. If the result is SOME(v), the token is consumed, and answer v
is returned.  If the result is NONE, the token is not consumed.

val freshId : string -> string
freshId(base) generates a unique identifier that includes the base string base. The
resulting identifier is guaranteed to be different from any other identifier in the program
and from any other identifier returned by freshId.

val parseScanner : Scanner.scanner -> AST.exp
Returns the first abstract syntax tree that can be derived by consuming all the tokens in
the given scanner. If no expression can be derived, or if there are tokens remaining after
an expression is derived, raises a noParse exception. Prints out error messages for any
noParse and zeroParse exceptions.

val parseString : string -> AST.exp
Returns the abstract syntax tree of the expression corresponding to all the tokens in the
given string. Raises an exception if the tokens cannot be parsed into an expression, giving
an indication of why this is so.

val parseFile : string -> AST.exp
Like parseString, but parses the tokens in the contents of the file named by the given
string.
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Appendix B: The ML Monadic Parser library

The file parser/MonadicParser.sml contains an implementation of Graham Hutton and Erik
Meijer's monadic parsing library in ML. For details about the Haskell version of this library, see:

 Graham Hutton and Erik Meijer. "Monadic Parser Combinators". Journal of Functional
Programming, 8(4):437-444. Cambridge, University Press, July 1998.

Of related interest is the description of combinator parsing in:

Jeroen Fokker. "Functional Parsing". In Advanced Functional Programming, Johan Jeuring
and Erik Meijer (Eds.) Lecture Notes in Computer Science 925, pp. 1-23. Springer Verlag,
1995

This ML library generalizes Hutton and Meijer's work by allowing parsers to work over lists of
any type of element, not just lists of characters. This is achieved by defining monadic parsers
over a token structure that must supply a toString function.

Here's a comparison of the parser types in Hutton and Meijer, Fokker, and in this library:

• Hutton and Meijer's parser type would be expressed in ML as:

datatype 'result parser =
  Parser of char list -> ('result * (char list)) LazyList.lazyList

• Fokker's parser type would be expressed in ML as:

datatype ('token, 'result) parser =
  Parser of 'token list -> ('result * ('token list)) LazyList.lazyList

• In this library, the parser type used is:

datatype 'answer parser =
  Parser of token list -> ('answer * (token list)) LazyList.lazyList

In this library, token is the type "built into" and instance of the parser by applying the functor
MonadicParserFunctor to a structure satisfying the SHOWABLE signature:

signature SHOWABLE = sig
  type element
  val toString : element -> string
end

Within the structure returned by invoking the functor, the token type is defined to be a synonym
for the element type of the argument structure. The toString function is used to display tokens
when an error is encountered by the parser.

Here is a example of how the MonadicParserFunctor functor can be applied to yield a monadic
parser structure specialized to a particular token type:

structure TokenMonadicParser =
    MonadicParserFunctor(struct
                          type element = Token.token
                          val toString = Token.toString
                         end
                        )
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In this case, a functor is used in ML to achieve the same effect as the Showable type class in
Haskell.  In general, functors are a more flexible way than type classes for parameterizing
modules.

Below are annotated signatures of the functions exported by the ML monadic parsing library. We
will use the term “attempt” to pairs of the form (answer, token list). Thus, a parser can abstractly
be viewed as a function that maps a (non-lazy) list of tokens to a lazy list of attempts.

exception noParse of token list
Exception raised by the parseAll function when there are no parses that consume all
tokens.

exception zeroParse of string * token list
Exception raised by parsers constructed with the nonZero combinator when the
underlying parser generates an empty sequence of attempts.

val zero : unit -> 'a parser
Returns a parser that always returns zero attempts.

val return : 'a -> 'a parser
return v returns a parser that when invoked on a list of tokens ts generates a single
attempt (v,ts).

val item : token parser
item is a parser that consumes and returns the first token of a token list. When invoked
on an empty list, it behaves like zero().

val bind : 'a parser -> ('a -> 'b parser) -> 'b parser
Suppose that p is a parser that when invoked on a list of tokens ts returns the attempts
(a1,ts1), (a2, ts2), …  Then bind p f concatenates together the attempt lists that result
from applying the parser (f ai) to the token list tsi.

val seq : 'a parser -> 'b parser -> 'b parser
Suppose that p is a parser that when invoked on a list of tokens ts returns the attempts
(a1,ts1), (a2, ts2), …  Then seq p q concatenates together the attempt lists that result from
applying the parser q to the token list tsi.

val sat : (token -> bool) -> token parser
Given a predicate pred,  returns a parser that consumes the first token of a list only if it
satisfies pred.

val plus : 'a parser -> 'a parser -> 'a parser
The invocation plus p q returns a parser that concatenates the results of parsing a token
list with p and with q.

val plusList : 'a parser list -> 'a parser
Returns the result of folding plus over the given list of parsers.

val choose : 'a parser -> 'a parser -> 'a parser
The invocation choose p q returns a parser that is like plus p q but which avoids
backtracking by only keeping the first attempt (any other attempts are effectively thrown
away).

val chooseList : 'a parser list -> 'a parser
Returns the result of folding choose over the given list of parsers.

val times : 'a parser -> 'b parser -> ('a * 'b) parser
The invocation times p q returns a parser that applies the parsers p and q in order on a given
token list and returns attempts whose answers are pairs of the two answers from p and q.
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val map : ('a -> 'b) -> 'a parser -> 'b parser
The invocation map f p returns the attempts that result by mapping p over the answer
component of each attempt generated by p.

val many : 'a parser -> 'a list parser
The invocation many p returns a parser that parses the maximal number of tokens
matched by a sequence of zero or more invocations of p and returns a list of the answers
of the individual invocations of p.

val many1 : 'a parser -> 'a list parser
Like many, but for a sequence of one or more invocations p.

val sepby : 'a parser -> 'b parser -> 'a list parser
The invocation sepby p q returns a parser that parses the sequences of zero or more
tokens matched by p that are separated by tokens match by q.

val sepby1 : 'a parser -> 'b parser -> 'a list parser
Like sepby, but for a sequence of one or more invocations p separated by tokens
matching q.

val chainr : 'a parser -> ('a -> 'a -> 'a) parser -> 'a -> 'a parser
Like sepby, except that the separator results are functions that are folded over from right
to left (via foldr) the separated elements.

val chainr1 : 'a parser -> ('a -> 'a -> 'a) parser -> 'a parser
The version of chainr that requires at least one element.

val chainl : 'a parser -> ('a -> 'a -> 'a) parser -> 'a -> 'a parser
Like chainr, except the results are folded from left to right (via foldl).

val chainl1 : 'a parser -> ('a -> 'a -> 'a) parser -> 'a parser
The version of chainl that requires at least one element.

val until : 'b parser -> 'a parser -> 'a list parser
Returns a parser that parses the maximal number of ‘a elements before a ‘b element is
encountered.

      val parse : 'a parser -> token list -> ('a * (token list)) LazyList.lazyList
Applies  the given parser to the given list of tokens.

val parseAll : 'a parser -> token list -> 'a
Applies  the given parser to the given list of tokens, and returns the first answer that
consumes all tokens.

val parseAllErr : string -> 'a parser -> token list -> 'a
Like parseAll, but prints out error messages for noParse and zeroParse exceptions.

val trace : string -> 'a parser -> 'a parser
Invoking trace s p returns a parser that prints out s and ts whenever it is applied to a
list of tokens ts.

val nonZero : string -> 'a parser -> 'a parser
Invoking nonZero s p returns a parser that prints out s and ts whenever it is applied to a
list of tokens ts and no attempts are generated.
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