Wellesley College a CS301 Compiler Design a December 6, 2000
Handout #12

PROBLEM SET 7
The Final Revision!
Dueon Friday, December 8

Thisisthe final version of PS7. It supersedes all previous versions. There are a few details not
yet worked out -- namely clever register allocators and contest details -- that will be posted to
the CS301 conference later.

READING
Appel, Chapters 6 through 11. A few notes:
In Chapter 6, you may ignore the details of the Frame abstraction.

In Chapter 7, Appel’s Tree language is a subset of the IRL language we have studied in
class.

The stages used in Chapter 8 are those used in the Bobcat compiler, modul o the handling
of constructsin IRL that are not in Appel’s Tree language (e.g., RETURN, TAI LCALL,
HALT).

In Chapter 9, Appel’ sinstruction selection algorithm translates from Tree into Assem an
abstract assembly language. In contrast, the Bobcat instruction selector translates from
IRL into asubset of IRL.

OVERVIEW

The purpose of this problem set isto help you gain familiarity with the theory and practice of
compiler back ends, particularly intermediate representation languages and transformations on
these languages (e.g. optimization, instruction selection, register allocation, etc). Y ou will get
hands-on experience with these in the context of a back end for Bobcat.

This assignment has three problems worth atotal of 250 points. There is also a contest aspect to
the problem set: teams can win tasty food prizes based on the efficiency of code produced by
their back ends.

COLLABORATION DETAILS

As usual, you should work in three teams of two members each. Y ou should work with the same
partner with whom you worked on Problem Set 6.

SUBMISSION DETAILS

Each team should turn in a single hardcopy submission packet for all problems by dlipping it
under Lyn’s office door by 5pm on the due date. The packet should include (1) your final version
of thefile Bobcat Tol RL. smi from Problem 1; (2) your final version of thefile

CanonToNor mal . sn from Problem 2; and (3) transcripts of your test cases for Problems 1 and 2.
Y our hardcopy submission packet should also include a header sheet for each team member (see
the end of this assignment for the header sheet), and should indicate where the softcopy
submission can be found.

Y our softcopy submission should consist of your local version of the bobcat / codegen program
directory described in the Getting Started section.

THE STRUCTURE OF THE BOBCAT BACK END

The Bobcat front end process a Bobcat source program and produces a Bobcat abstract syntax
tree (AST). For the remainder of this discussion, we shall assume that the AST is well-typed.
Thereis aBobcat evaluator that can be used to evaluate such ASTs; see Appendix A.

The Bobcat back end transforms awell-typed Bobcat AST into executable MIPS code with the
same behavior. The Bobcat back end has the following stages:

The Input Stage translates Bobcat ASTsinto programs in the tree-structured IRL
intermediate representation language. The IRL language is summarized in Appendix B. It
uses psuedo-register and label abstractions that a supplied by the Tenp structure,
described in Appendix C. Support code for IRL includes a pretty printer (Appendix D)
and an evaluator (Appendix E). This stage corresponds to Chapter 7 of Appel's book.

Y ou will implement this stage viathe Bobcat Tol RL trandation in Problem 1.

The Canonicalization Stage tranglates IRL programsinto arestricted canonical form,
which is defined in Appendix F. This stage, which is described in Chapter 8 of Appel, has
been implemented for you; details on the functions for this stage can also be found in
Appendix F.

The Instruction Selection Stage translates canonical IRL programs into programsin
MIPS normal form, arestricted form of IRL that corresponds closely to MIPS machine
code. MIPS normal form isdefined in Appendix G. Instruction selection is covered in
Chapter 9 of Appel. You will implement this stage viathe CanonToNor mal tranglator in
Problem 2. (The CanonToNor mal stage only implements part of instruction selection; the
other part isimplemented by the Nor mal ToM PS stage in Problem 3.)

The Register Allocation Stage translates normal-form IRL programs using arbitrarily
many pseudo-registers into normal-from IRL programs that use the small number of
registers available on a MIPS processor. This stage is described in Chapter 11 of Appdl; it
makes use of aliveness analysis described in Chapter 10 of Appel. Various agorithms
for this stage will be implemented for you.

The Output Stage trandates the result of register allocation into executable MIPS code,
accomplishing the second part of instruction selection while performing code generation.
This stage also makes explicit the details of the function calling convention. Y ou will
implement this stage viathe Nor mal ToM PS translator described in Problem 3.

GETTING STARTED

Begin this assignment by connecting to your local ¢s301 directory and executing the following in
ashell:

cvs update -d

Thiswill install the cs301/ bobcat / codegen directory and make updates to several bobcat and
irl files. All thefilesyou will need to edit can be found in the codegen directory.

PROBLEM 1: BobcatTolRL [80]

In this problem, you will translate Bobcat ASTsinto IRL code by implementing the following
functionin thefile Bobcat Tol RL. sm :

val translate : AST.prog -> | RL. pgm _ _
Returns an IRL program that has the same behavior as the given Bobcat AST.

Once you definethet r ansl at e function, the following functions will also be defined:

val translatePgm: AST.prog -> IRL. pgm _)
Returns the result of tranglating the given Bobcat AST into IRL after it has been extended
with the Bobcat standard library.

val translateString : string -> I RL. pgm)) _
Returns the result of t r ans| at ePgmon the Bobcat program written as the given string.

val translateFile : string -> | RL. pgm _
Returns the result of t r ansl at ePgmon the Bobcat program that is the contents of the
givenfile.

Y ou can use the IRL pretty-printer (Appendix D) and IRL evaluator (Appendix E) to test the
results of your tranglations on individual test files (such asthosein the bobcat / t est directory).
Since the tree structure of the code produced by translate is somewhat difficult to read, itis
recommended tat you first linearize or canonicalize the IRL code before pretty-printing it; see
Appendix F for details. When using the IRL evaluator, setting the debug flag to true displays
lots of information, some of which may help you pinpoint bugs.

A more thorough test of the Bobcat Tol RL translator can be accomplished viathe following
functionsin the Bobcat Tol RLTest structure:

val test : unit -> unit
Runs the BobcatTolRL tranglator on test cases in a benchmark suite, and compares the
results of running the Bobcat evaluator on the pre-trandated program to the results of
running the IRL evaluator on the post-translated program. Whenever the results differ,
the differences are printed viathe Unix di f f command.

val testVerbose . unit -> unit
Liket est, but also displays the output of the two evaluators on each test case.

Y ou should approach this problem in stages. First, implement the most straightforward
trangation from Bobcat ASTsto IRL that you can think of, and make sure it works. Two details
to watch out for:

When compiling a function body, make sure that every control path endsin aRETURN or a
TAI LCALL. For this purpose, the program body should be treated as the body of anullary
function. (Note that the IRL evaluator will complain if it encounters an empty sequence of
statements -- something that will happen if a RETURN or TAI LCALL IS missing).

The trandation must represent global variables by global memory locations; global variables
cannot correctly be represented as temporaries (i.e., locations in a stack frame).

The straightforward translation is rather inefficient and can be improved in many ways. Chapter
7 of Appel describes some improvements that you may wish to implement in a second pass. An
important improvement not considered by Appel is ensuring that all tail-recursive function
invocations in the Bobcat source program are translated to the TAI LCALL statement in IRL.

3

PROBLEM 2. CanonToNormal [90]

In this problem, you will implement instruction selection for Bobcat by translating canonical IRL
programsinto IRL programsin MIPS normal form. (See Appendix G for adefinition of MIPS
normal form.) Modulo the issues of (1) pseudo-registers and (2) implicit function calling
conventions, IRL programsin MIPS normal form are very close to MIPS machine code.

Y our task in this problem is to implement the following function in the file CanonToNor mal . sni :

val normalize : IRL.pgm-> IRL. pgm)
Given an IRL program in canonical form, returns an IRL program in MIPS normal form
that has the same behavior as the given program.

Once you define the nor mal i ze function, the following functions will also be defined:

val normalizePgm: AST.prog -> IRL. pgm o _
Returns the result of tranglating, canonicalizing, and normalizing the given Bobcat AST
after it has been extended with the Bobcat standard library.

val normalizeString : string -> I RL. pgm)) _
Returns the result of nor mal i zePgmon the Bobcat program written as the given string.

val normalizeFile : string -> | RL. pgm]] _
Returns the result of nor mal i zePgmon the Bobcat program in the given file.

Asin Problem 1, you can use the IRL pretty-printer and evaluator to test your nor mal i ze
function on test cases. The following function in the Nor mal structure is handy for verifying that
the result of your select function isindeed in normal form:

val normal Check’ : IRL.pgm-> unit .)
Returns unit if the given program isin MIPS normal form. Otherwise, raises an Abnor nal

exception describing why the program is not in normal form.

val normal Check : IRL.pgm-> unit))
Like normal Check’, but prints out an error in exceptional cases.

A more thorough test of the CanonToNor mal normalization can be accomplished viathe
following functions in the CanonToNor nal Test structure:

val test : unit -> unit
Runsthe Bobcat Tol RL, Canon, and CanonToNor nal Stages on test cases in a benchmark
suite. For each test case in the suite, it first verifies that the result of these stagesisin
normal form, and then compares the results of running the Bobcat evaluator on the pre-
tranglated program to the results of running the IRL evaluator on the post-translated
program. Whenever the results differ, the differences are printed viaUnix di f f .

val testVerbose : unit -> unit
Liket est, but also displays the output of the two evaluators on each test case.

Asin Problem 1, you should approach this problem in stages. First, implement the most
straightforward instruction selection algorithm that you can think of and test that it works. Y our
translation should not introduce any "real" registers, except perhapsfor $zer o. (Real registers
like $a0, $vO0, $sp, etc. will be introduced in the Normal ToMIPS stage of Problem 3.) Second,
consider using the maximal munch algorithm described in Chapter 9 of Appel to improve your
instruction selection. Finaly, consider optimizations that will improve the results of the
instruction selection process (e.g., replace multiplying by a small power of 2 by aleft-shift
operation).

4

PROBLEM 3: NormalToMIPS [80]

In this problem, you will trandlate register-reduced MIPS normal form IRL programsinto
executable MIPS programs. (See Appendix H for the defintiion of register-reduced MIPS normal
form.) Y our task isto flesh out the following function in the file Nor mal ToM PS. smi .

val gen : IRL.pgm-> MPS.instr |ist
Given an IRL program in register-reduced MIPS normal form, returns a sequence of
MIPS instructions that has the same behavior as the given program.

Once you define the gen function, the following functions will also be defined:

val genPgm : AST.prog -> | RL. pgm
Returns the result of tranglating, canonicalizing, normalizing, register allocating, and
generating MIPS code for the given Bobcat AST after it has been extended with the
Bobcat standard library.

val genString : string -> I RL. pgm)) _
Returns the result of genPgmon the Bobcat program written as the given string.

val genStringPrint : string -> unit)] _
Prints the result of genPgmon the Bobcat program written as the given string.

val genStringToFile : string -> string -> unit
(genStringToFil e pgnBtring outFile) writestoout Fi | e the result of genPgmon the
Bobcat program written as pgnst ri ng.

val genFile : string -> IRL. pgm _))
Returns the result of genPgmon the Bobcat program that is the contents of the given file.

val genFilePrint : string -> unit _) _
Prints the result of genPgmon the Bobcat program that is the contents of the given file.

val genFileToFile : string -> string -> unit
(genFil eToFile inFile outFile) writestoout Fi | e theresult of genPgmon the
Bobcat program that is the contents of i nFi | e.

Asin Problem Set 4, you can use the toolsin the M PS structure and spi mprogram to test the
results of your gen function. Recall that you can uset r ace/not r ace to turn detailed instruction
tracing on/off in the text-based interface. (Sorry, there is no equivalent facility in the windows-
based interface). After executing a program, use thef r eq command to print out the frequencies
of MIPS instructions used in the previous execution.

A more thorough test of Nor mal ToM PS code generation can be accomplished viathe following
functionsin the Nor mal ToM PSTest structure:

val test : unit -> unit
Runs the Bobcat Tol RL, Canon, CanonToNor mal , RegAl | oc, and Nor mal ToM PS stages on
test cases in a benchmark suite. For each test case in the suite compares the results of
running the Bobcat evaluator on the pre-translated program to the results of running the
spi mon the post-tranglated program. Whenever the results differ, the differences are
printed viathe Unix di f f command.

val testVerbose : unit -> unit
Liket est, but also displays the output of the two evaluators on each test case.

As part of trandlating register-reduced MIPS normal form IRL statements to MIPS instructions,
the Norma ToMIPS translator also makes explicit the function calling convention that isimplicit
in function bodies and in the following IRL statements:

MOVE(TEMP(rd), CALL(fcn, args))
TAI LCALL(n, fcn, args)
RETURN(n, TEMP(rs))

where fcn has the form NAMVE(1abel) or TEMP(reg) , with reg areal machine register, and args
isalist of elements of the form TEMP(reg) . In register-reduced form, the n formal parameters of
an IRL function are named with argument temporaries whose indices range from 1 to n. (See
Appendix C for the interface to argument temporaries.)

Y ou should assume that the first four arguments of afunction are passed in machine registers
$a0, $al, $a2, and $a3, and that any additional arguments are passed on the stack. Try not to
hardwire these assumptionsinto your code --- you should write your code in such away that it is
easy to change which and how many registers are used for passing arguments.

As part of implementing the function calling convention, you will need to distinguish CALL from
TAI LCALL. Recall that:

CALL invokesthe called function viaj al orj al r, and pushes a new stack frame on top of the
current one. This stack frame (including any stack-based arguments to the called function)
are popped when RETURN is executed in the body of the called function.

TAI LCALL pops the current stack frame before pushing a new one, and invokes the called
functionviaj orjr.

As part of compiling a function body, you will somewhere need to allocate space for local
variables, which are denoted by spill temporariesin register-reduced IRL. There are many ways
to allocate local variables, reference them, and later deallocate them. Think carefully about your
strategy before you implement it. Reviewing the function calling convention lectures from class
and skimming Chapter 6 of Appel may be helpful here.

The register allocator guarantees that the n spill temporaries used in a single function body have
indices from 1 to n; thisfact is very useful for allocating space for local variables. Y ou do not
have to worry about saving caller- and callee- saves machine registers (conventionally, the $t n
and $sn registers, respectively); the register allocator will do this for you (see Appendix H).
However, you are responsible for saving the $r a register appropriately.

Here are some other details that are important:

Y ou may generate MIPS code in any way you want, but it is strongly recommended that you
use the code generation monad that was discussed in lecture and is provided in
Nor mal ToM PS. smi .

Asin the SLIP code generator studied in class, you will also need to allocate global variables
in the data section of the MIPS code for Bobcat variables declared at top-level.

It is possible to reference al information in the stack activation frame viathe stack pointer
($sp) register. However, you may wish to use the frame pointer ($f p) register in conjunction
with the stack pointer register, as discussed in Chapter 6 of Appel. It's up to you.

For determining properties of programs like "what's the maximal index of a spill temporary
in this function body" or "what global variables are used in this program”, you probably want
to use the way cool expression/statement enumerator described in Appendix I.

For determining properties such as those mentioned above, you may also wish to manipulate
sets whose elements have typet enp, or tables whose keys have typet enp. These are
provided by the structures TenpSet and TenpTabl e exported by the Tenp structure. The
interface for setsis described at

http://cm.bell-labs.com/cm/cs/what/smlnj/doc/sminj-lib/M anual/ord-set.html .

The interface for tables can be found in the cs301 CV S repository in
~cs301/util s/ Table.sn .

For nested structures, you use nested qualification to access an element. For instance, the
empty set can be written Tenp. TenpSet . enpt y. You can use local structure abbreviations to
simplify the qualified names. For example:

structure TS = Tenp. TenpSet
. TS.enpty ..

There are analagous structures Tenp. Label Set and Tenp. Label Tabl e for manipulating sets
with label elements and tables with label keys.

Note: In previous versions of the code, TenpSet was defined in Nor mal ToM PS. smi . It has
been moved to Tenp to make it more accessible for all phases of compilation.

The label named mai n is problematic in the Nor mal ToM PS translation. MIPS expects the
entry point to the program to be the label mai n. However, syntactic sugar for Bobcat
programs can introduce a function named nai n that is distinct from the top-level entry point
to the program. To finesse this problem, it is recommended that you prefix al labels arising
in code generation with a special header (e.g. "user. ") so that the label for the Bobcat
function named nai n does not clash with the mai n entry label for the MIPS program.

To compile the HALT statement, you will need to use the exit system call (code = 10).

The Bobcat standard library functions will automatically be included with your Bobcat
program beforeit is compiled. However, in the Norma ToMIPS code generator, you need to
handle the five primitive functions specially: chr, or d, eof , readc, and wri t ec. These can
be handled as follows:

= To be consistent with the Bobcat evaluator, chr should mod by 256 the integer value
representing the character. (Implementing this without using a new temporary register
requires alittle bit of cleverness.)

= ord isjust theidentity operator at the machine level.

= eof can by implemented by a system call with code 17.
r eadc can be implemented by a system call with code 14.

wr i t ec can be implemented by a system call with code 11.

7

BACK END CONTEST

Each team's back end will be entered into a contest. (Don't tell your parents this!) The back end
will be exercised on a suite of benchmark programs, and the number of MIPS instructions
executed for each program will be measured. (Recall that the spim f r eq command will show you
the MIPS instruction frequencies.) A weighted sum of instructions over all benchmark programs
will be calculated.

Teams will be ranked first by the correctness of their compiler (how many programs are
compiled correctly) and second by the weighted sum of instructions. A smaller weighted sum
indicates a more efficient compiler.

Teams will be eligible for valuable Trader Jo€'s treats that depend on their final ranking:

First Place: Each team member gets one large treat or two small treats.
Second Place: Each team member gets one small treat.
Third Place: Team members share one small treat.

Details about the benchmarks and weighting functions will be posted soon.

APPENDI X A: The Bobcat Evaluator

The CV S-controlled directory ~cs301/ bobcat / eval containsafileEval . sni that defines an
Eval structure with the following signature:

exception Eval Error of string _ o
This exception is raised when an error in Bobcat evaluation is encountered.

val eval : AST.prog -> unit _)
(eval pgm) evaluatesthe Bobcat AST pgmusing the console as standard input and
output.

val eval String : string -> unit
(eval String bobcat String) typechecksand evaluatesthe Bobcat program in
bobcat St ri ng, extended with the standard libraries, using the console as standard input
and output.

val eval Stringln : string -> string -> unit .
(eval Stringln bobcatString infile) islike (eval String bobcatString), butit
usesi nfil e as standard input.

val eval StringQut : string -> string -> unit
(eval Stringln bobcatString outfile) islike (eval String bobcat String), but
it uses outfile as standard output.

val eval StringlnQut : string -> string -> string -> unit
(eval StringlnQut bobcatString infile outfile) islike (eval String
bobcat String), butitusesinfileasstandard input and outfile as standard output.

val evalFile : string -> unit
(eval Fil e bobcat Fi | e) type checksand evaluates the Bobcat program in thefile
named bobcat Fi | e, extended with the standard libraries, using the console as standard
input and output.

val evalFileln : string -> string -> unit
(eval Fileln bobcatFile infile) islike (eval File bobcatFile) butusesinfile
as standard input.

val evalFileQut : string -> string -> unit
(eval Fil eQut bobcatFile outfile) islike (eval File bobcatFile) butuses

out fi | e asstandard output.

val eval FilelnQut : string -> string -> string -> unit
(eval Fil el nQut bobcatFile outfile) islike (eval File bobcatFile) butuses
i nfile asstandard input and out fi | e as standard output.

val withStandardHandler : 'a -> (unit ->'a) -> "'a
(wi t hSt andar dHandl er defaul t thunk) evaluatest hunk inthe context of a standard
exception handler that prints the messages of Eval Er r or exceptions. It returns the value
of thet hunk if no exception israised, and default if exception is raised.

APPENDIX B: ThelRL Intermediate Representation L anguage

The CVS-controlled file~cs301/iri /1 RL. sm definesthe | RL structure given below. IRL
extends Appel’s Tree intermediate language from Chapter 7 with (1) a program construct with
mutually recursive function declarations; (2) RETURN, TAI LCALL, and HALT statements; and (3)
larger integers (Int32.int). IRL isgood as atarget for aflat, first-order language like Bobcat, but
cannot easily model Tiger’s block structure or ML’ s higher-order functions.

structure IRL = struct

(* A programis a collection of global nutually recursive function and
alist of statements to be executed relative to these *)
dat at ype pgm = PROG of fundecl list * stmlist

(* A nenber of the collection of global nutually recursive function decls *)
and fundecl = FUNDECL of label * Tenp.tenp list * stmlist

and stm = SEQ of stm™* stm
| LABEL of Tenp. | abel
| JUMP of exp * Tenp.label I|ist
| CJUWP of relop * exp * exp * Tenp.label * Tenp. | abel
| MOVE of exp * exp
| EXP of exp
(* The following are newin IRL *)
| RETURN of int * exp
| TAILCALL of int * exp * exp |ist
| HALT of string

= BI NOP of binop * exp * exp

| MEM of exp

| TEMP of Tenp.tenp

| ESEQ of stm™* exp

| NAME of | abel

| CONST of Int32.int (* Larger than Appel's int *)
| CALL of exp * exp list

and binop = PLUS| MNUS | ML | DIV | MDD (* MDD is newin IRL *)
AND | OR| LSHFT | RSHFT | ARSH FT | XOR

and relop = LT | LE |EQ|] NE| GI'| GE| UT | ULE | UGT | UGE

(* Invert the sense of a relop *)

fun notRel LT = GE| notRel LE = GT | notRel EQ = NE | notRel NE = EQ
| notRel GE = LT | notRel GT = LE | notRel ULT = UGE | notRel ULE = UGT
| notRel UGE = ULT | notRel UGT = ULE

val NOOP = EXP(CONST(Int.toLarge(0))) (* A "no op" is a "do nothing" instr *)

(* Convert an IRT.stmlist to an I RT stm *)
fun seqStn([]) = NOOP

| segStm([stm) = stm

| segStm(stm:stns) = SEQstm seqStn(stns))

(* Convert an IRT.exp list to an I RT stm *)
fun seqExp(es) = seqStm (List.map EXP es)

fun const(n) = CONST(Int32.toLarge(n))
fun fundecl Label (FUNDECL(I abel , ,)) = I abel
fun fundecl Paranms(FUNDECL(_, parans,)) = parans
fun fundecl Body(FUNDECL(_, , body)) = body

end

10

APPENDIX C: The Temp Structure

IRL labels and temporaries are supplied by a Tenp structure in the CV S-controlled file
cs301/irl/ Tenp. snl . The signature for these are given below. (The signature is a modification
of that in Chapter 7 of Appel).

The labels are straightforward. For creating labels local to a function body, you should use
newLabel or namedNewLabel ; the only differenceisthat the latter incorporates a name which can
help debugging. To generate labels whose global name matters, use namedLabel .

eqt ype | abel
The abstract type of an IRL |abel.

val newLabel : unit -> | abe
Returns afresh |abel.

val namedNewlLabel : string -> |abel] _]] _
Returns a fresh label whose name extends the given string with a unique integer.

val nanedLabel : string -> |abel .
Returns the label with the given label. While calls to newTenp or namedNewLabel aways
return fresh labels, two calls to namedTenp with the same name return the same |abel.

val | abel ToString : label -> string
Returns the string name of alabel.

val | abel Conpare : | abel * |abel -> order
Returns the order (LESS,EQUAL,GREATER) of two labels.

structure Label Set : ORD _SET
Structure for sets whose elements have type| abel .

structure Label Table : TABLE
Structure for tables whose keys have type| abel .

There are four classes of IRL temporaries:

Register temporaries (created viareg) represent real machine registers. Except for the
distinguished $zero register, these temporaries are not introduced until the register allocation
phase.

Argument registers (created via arg) represent abstract argument registers. These are
introduced by the register alocation phase and should be trandlated into real argument
registers or stack offsets as part of the Normal ToMIPS tranglation.

Spill register s (created via newSpill) represent stack locations. These are introduced by the
register allocation phase and should be translated into stack offsets as part of the
Norma ToMIPS trandlation.

Pseudo-register s (created via newTemp or namedNewTemp) represent one of arbitrarily
many abstract locations. These are completely removed by the register allocation stage.

11

eqtype tenp)
The abstract type of an IRL pseudo-register.

val newTenp : unit -> tenp
Returns a fresh pseudo-register.

val nanmedNewTenp : string -> te) .))
Returns a fresh pseudo-register whose name extends the given string with a unique
integer.

val arg : int -> tenp) . .
Returns atemp denoting an abstract argument register indexed by the given number,
which should be 1 or greater.

val isArg : tenp -> bool _
Returnst r ue if temp isan argument temp, andf al se otherwise.

val arglndex : tenp -> int o] _ _
If t enp iSan argument temp, returnsitsindex (>= 1). Otherwise, raisesaFai | exception.

val reg : string ->te _]]] _
Returns a temp denoting the MIPS register with the given name, which must begin with a
' $' . Different invocations of the r eg function with the same string return the same temp.

val isReg : tenp -> bool)
Returnst r ue if temp isaregister temp, and f al se otherwise.

val newSpill : unit ->temp) _
Returns anew spill temp, whose index is the current value of the spill counter. The
counter isincremented as a side effect of invoking this function.

val isSpill : tenp -> bool _
Returnst rue if tempisaspill temp, andf al se otherwise.

val spilllndex : tenp ->int _) _
If temp isaspill temp, returnsitsindex (>= 1). Otherwise, raises aFai | exception.

val resetSpill Counter : unit -> unit
Resets the spill counter to have value 1.

val tenpToString: temp -> string)
Returns the string name of a pseudo-register.

val tenpConpare : tenp * tenp -> order
Returns the order (LESS,EQUAL ,GREATER) of two pseudo-registers.

structure TenpSet : ORD_SET

Structure for sets whose elements have typet enp.

structure TenpTable : TABLE
Structure for tables whose keys have typet enp.

12

APPENDIX D: ThelRL Printer

IRL programs, statements, and expressions can be pretty-printed by the following functionsin
thel RLPri nt er structure, which can be found in the CV S-controlled file
cs301/irl/IRLPrinter.sm.

val printPgm: IRL.pgm-> unit
Pretty-prints the given IRL program.

val printStm: IRL.stm-> unit
Pretty-prints the given IRL statement.

val printStms : IRL.stmlist -> unit
Pretty-prints the given IRL statment list.

val printExp : IRL.exp -> unit
Pretty-prints the given IRL expression.

val binopToString : IRL.binop -> string
Returns a string representation of the binop.

val relopToString : IRL.relop -> string
Returns a string representation of the relop.

APPENDI X E: ThelRL Evaluator

IRL programs can be executed viathe IRL evaluator found in the | RLEval structure within the
CVS-controlled filecs301/irl /1 RLEval .

val debug : bool ref) _
When debug istrue, the current statement and machine state are displayed for every
statement executed. When debug isfalse, no such information is displayed.

val eval : IRL.pgm-> unit]
(eval pgm evaluatesthe given IRL program AST pgmusing the console as standard
input and output

val evalln : IRL.pgm-> string -> unit))
(eval In pgminfile) islike(eval pgm exceptthatitusesinfil e asstandard input.

val evalQut : IRL.pgm-> string -> unit]
(eval Qut pgmoutfile) islike(eval pgm exceptthatitusesoutfil e asstandard
output.

val evallnQut : IRL.pgm-> string -> string -> unit

(eval InQut pgminfile outfile) islike(eval pgm exceptthatitusesinfile as
standard input and out f i | e as standard output.

val withStandardHandler : 'a -> (unit -> 'a) ->"'a
(wi t hSt andar dHandl er defaul t thunk) evaluatest hunk in the context of a standard
exception handler. It returns the value of thet hunk if no exception is raised, and default
if an exception is raised.

val _binopToM. : IRL.binop -> (Int32.int * Int32.int -> Int32.int)
Returns an ML function corresponding to the IRL binop

val relopToM. : IRL.relop -> (Int32.int * Int32.int -> bool)
Returns an ML function corresponding to the IRL relop.

13

APPENDI X F: ThelRL Canonicalizer

The CVS-controled filecs301/i r1/ Canon. sm defines aCanon structure that supplies the
canonicalization functions below. These functions are essentially those discussed in Chapter 8 of
Appel, extended to handle the additional features of IRL. We introduce the following
terminology:

= AnIRL statement listisin linear form if the following two conditions are satisfied:

NoO SEQ statements or ESEQ expressions appear in the statement list.

The parent of every CALL expression is an EXP statement or a MOVE(TEMP(..) , ..)
Statement.
Note that each occurrence of the pattern RETURN(n, (CALL(e, es)) can be optimized to
TAI LCALL(n, e, es), removing the need to consider CALLS that have RETURN as their
parent.
= AnIRL programislinear if the program body and all function bodies are statement lists
inlinear form.
= Alistof IRL statementsisabasic block if it satisfies the following conditions:
[tisinlinear form.
It begins with a LABEL statement and contains no other occurrences of a LABEL statement.
It ends with aJumP, CJUMP, RETURN, TAI LCALL, Or HALT statement, and contains no other
occurrences of these statements.
= The parent of every CALL expression is an EXP statement or a MOVE(TEMP(.), ..) AnIRL
program isin canonical form if the following two conditions are satisfied:

The programisin linear form.

Every cJuvp statement isimmediately followed by its false label.
= AnIRL programiscanonical if the program body and al function bodies are statement
listsin canonical form.

wNhE

Here are the functions supplied by the Canon structure:

val linearizeStm: IRL.stm-> [RL.stmlist . .
Returns alinear form statement list with the same meaning as the given one.

val linearizeStns : IRL.stmlist -> IRL.stmlist . .)
Returns alist of statementsin linear form with the same meaning as the given list.

val linearizePgm: IRL.pgm-> |RL.pgm)
Returns alinear program with the same meaning as the given program.

val basicBlocks : IRL.stmlist -> IRL.stmlist |ist
Assume the input statement list isin linear form. Returns a partitioning of the given
statement list into basic blocks. The partitioning may add new LABEL and JUWP
statements.

val traceSchedule : IRL.stmlist list -> IRL.stmlist o)
Reorder and concatenate alist of basic blocksto yield a statement list in canonical form.

val canonStm: IRL.stm-> IRL.stmlist]]
Returns a canonical form statement list with the same meaning as the given statement.

val canonStns : IRL.stmlist -> IRL.stmlist)])
Returns a canonical form statement list with the same meaning as the given statement list.

val canonPgm : |RL. pgm-> I RL. pgm . .
Returns a canonical program with the same meaning as the give program

14

APPENDI X G: MIPS Normal Form

We will say that an IRL programisin MIPS normal form (or just normal form) if it satisfies
the following three conditions:

1
2.
3.

Itisin canonical form.

It does not contain any EXP statements.

Every IRL statement (or in some cases, sequence of statements) can be straightforwardly
trangated to a sequence of MIPS assembly instructions without requiring any extra
temporary registers. This excludes register $at reserved for the assembly process, aswell as
dedicated machine registers (e.g., $a0, $v0, $sp) needed for certain IRL instructions (CALL,
TAI LCALL, RETURN, HALT).

In particular, MIPS normal form is defined by the left-hand column of the table in Figure 1,
which shows a correspondence between IRL statements and MIPS instructions. The table uses
the following notation.

bop ranges over elemens of | RL. bi nop.
bopi ranges over ADD, AND, OR, XOR.
sop ranges over LSHI FT, ARSHI FT, RSHI FT.

rop ranges over elements of | RL. r el op.

ropO ranges over Ge, GT, EQ, NE, LE, LT.

lab, labt, labf range over |abels.

labs rangesover lists, each of whose elementsisa lab.

r,rd, rs, rt range over pseudo-registers.

temp ranges over expressions of the form TEMP(r) .

temps ranges over lists, each of whose elementsis a temp.

addr ranges over expressions of the form CONST(n) , NAVE(1ab) , or TEMP(r) .

loc ranges over expressions of the form CONST(n), NAME(1ab) , TEMP(r)
or BI NOP(PLUS, TEMP(p), CONST(c).

Figure 1 effectively defines the instruction selection for IRL to MIPS trandlation. (See Chapter 9
of Appel for adiscussion of instruction selection.) In the Bobcat compiler, instruction selection is
performed by a combination of the CanonToNor mal and Nor mal ToM PS stages. The

CanonToNor mal stage puts IRL code into anormal form that exposes temporary registers so that
register allocation can be performed, while the Nor mal ToM PS stage performs the actual
translation to MIPS instructions.

Some notes about Figure 1.

It isassumed that CONST(0) and TEMP(Tenp. reg(" $zero")) should be interchangeable.
That is, it should always possible to use one in place of the other.

The five statement IRL sequences corresponding to seq, sne, ..., sl ti are not necessary for
defining MIPS normal form, but they do play a part in instruction selection.

MIPS normal form does not make the details of the function calling convention explicit. It is
assumed that these details will be determined by the Nor mal ToM PS stage. However, this
implies that the register allocator must know which registers are used by the CALL, TAI LCALL,
RETURN, and HALT instructions. See Appendix H for details.

15

IRL instruction(s)

MIPS instruction(s)

LABEL(lab)

lab:

HALT(string)

print_string and exit syscals

RETURN(n, temp) function return protocol
TAILCALL(n, addr, temps) tall call protocol
MOVE(TEMP(rd), CALL(addr, temps)) function call protocol (includesjal orjalr)

MOVE(TEMP(rd), addr) li rd, a If addr = CONST(a)
la rd, lab if addr = NAVE(lab)
move rd, rs if addr = TEMP(rs)
MOVE(TEMP(rd) , bop® rd, rs, rtwherebop/bop" isone of
Bl NOP(bop, TEMP(rs), TEMP(rt))) ADDY add, ANDY and, DI V/div, MO/ rem
M NUS/ sub, MJL/mul, OR/ or, XOR/ xor.
LSHI FT/sl v, ARSHI FT/srav, RSHI FT, srlv
MOVE(TEMP(rt) , bopi® rt, rs, n wherebopi/bopi*® ISone of

Bl NOP(bopi, TEMP(rs), CONST(n)))

ADD/ addi ANDY andi, OR/ori, XOR/ xori

MOVE(TEMP(rd) ,
Bl NOP(sop, TEMP(rt) , CONST(shamt)))

sop” rd, rt, shamt where sop/bop* IS one of
LSH FT/sl |, ARSHI FT/sra, RSHI FT, srl

MOVE(TEMP(rt), MEM loc))

Iw rt, a, If loc = CONST(a)
lw rt, lab, if loc = NAVE(lab)
lw rt, rs, if loc = TEMP(rs)
lw rt, n(rs),if loc =
Bl NOP(PLUS, TEMP(rs) , CONST(n)

MOVE(MEM Toc), TEMP(rt))

SwW
SWrt,

rt, a, If loc = CONST(a)

lab, if oc = NAME(lab)
sw rt, rs, if loc = TEMP(rs)
swrt, n(rs),Iif loc =

Bl NOP(PLUS, TEMP(rs) , CONST(n)

NOVE(TEVP(rd) ,

Bl NOP(M NUS, CONST(0), TEMP(rs)))

neg rd, rs

MOVE(TEMP(rd) , not rd, rs
Bl NOP(XOR, CONST(~1), TEMP(rs))
MOVE(TEMP(rd) , nor rd, rs, rt
Bl NOP(XOR, OONST(~1),
BI NOP(OR, TEMP(rs), TEMP(rt))))
JUWP(addr, labs) j addr, If addr = CONST() oOr NAMVE(I)
jr rs, ifaddr = TEMP(rs)
CJUMP(rop, temp, temp, labt, labf) rop” where rop/rop” isone of
LABEL (1abT) EQ beq, NE bne,
GE/ bge, UGE/ bgeu, GI/bgt , UGT/ bgt u,
LE/ble, ULE/bleu, LT/blt, ULT/bltu
CIJUMP(rop0, temp, CONST(0), labt, labf) | rop0® where rop0/rop0* isone of
LABEL(Iabf) GE/ bgez, GI/bgt, LE/ blez,
LT/bltz, EQ beqz, NE/ bnez
MOVE(TEMP(rd) , CONST(1)) rop"rd, rs, rt whererop/rop® one of
CIJUMP(rop, TEMP(rs), TEMP(rt), labt, labf) EQ seq, NE/ sne,
LABEL(1abf) GI/sgt, GE/sge, UGI/sgtu, UCE/ sgeu,
MOVE(TEMP(rd) , CONST(0)) LE/sle, LT/slt, ULT/sltu, ULE/ sleu
LABEL(labt)
MOVE(TEMP(rt), CONST(1)) slti rt, rs, imm

CJUVP(LT, TEMP(rs), CONST(imm), | abt, | abf)
LABEL(f al seLabel)

MOVE(TEMP(rd) , CONST(0))
LABEL(truelLabel)

Figure 1. Correspondence between |RL statementsand MIPSinstructions

16

APPENDIX H: ThelRL Register Allocator

The IRL register alocator translates an IRL program in MIPS normal form to onein register
reduced MIPS normal form. Thisform isone that maps straightforwardly to MIPS machine
code.

An IRL program isin register-reduced MIPS normal formif it satisfies the following seven
conditions:

1. Itisin MIPS normal form.

2. It does not use any pseudo-register temporaries. Rather, all temporaries are either register
temporaries, argument temporaries, or spill temporaries. These three kinds of temporaries are
all introduced by the register allocation phase. (See Appendix C for adiscussion of the four
types of temporaries.)

3. All formal parameters for IRL function declarations are argument temporaries.

4. Argument temporaries are only referenced in the following context:

MOVE(TEMP(reg), TEMP(arg))
where reg isaregister temporary and arg is an argument temporary.
5. Spill temporaries are only used in the following contexts:

MOVE(TEMP(reg), TEMP(spill))
MOVE(TEMP(spill), TEMP(reg))

where reg isaregister temporary and spill isaspill temporary. These correspond to |oad
and store instructions in MIPS code.

6. Caller-savestemporary registers (conventionally, those named $t n) that are live across a
function call are saved to and restored from spill temporaries across that call.

7. Callee-savestemporary registers (conventionally, those named $sn) that used within a
function body are saved to and restored from spill temporaries across the function body.

The interface to the IRL register alocator is the following function in the RegAl | oc structure:

val alloc : IRL.pgm-> | RL. pgm . .
Given an IRL program in MIPS normal form, returns an IRL program in register-reduced
MIPS normal form.

Asdiscussed in Chapter 11 of Appel, there are many strategies that could be used to implement
register allocation. The IRL register allocator is designed to support multiple strategies. At the
current writing, only one strategy is implemented:

» naive: this strategy assumes that every pseudo-register should be spilled. It uses real
registers only for reading and writing values from spilled locations on an instruction by
instruction basis. Thisis simple to implement, but extremely inefficient.

The naive strategy is good enough to allow you to develop and test aNor mal ToM PS code

generator, but it will not yield very good MIPS code. It is hoped that more sophisticated register
allocation strategies will be available by the time the contest is run.

17

While MIPS normal form makes explicit most aspects of compiled code, it leaves certain details
implicit, especially those involving function calls. In order to perform its job, the register
allocator must make certain assumptions about the real machine registers used by the following
statements:

MOVE(et, CALL(e, es)) usesthe following registersin addition to those used in et and es:
- $ra,

$voO,
thefirst n of registers $ao0, $a1, $a2, and $a3, where n isthe smaller of 4 and length(es).

All caller saves temporary registers (conventionally $t 0 -- $t 9, though the register
allocator is free to choose a different convention).

TAI LCALL(n, e, es) usesthe following registersin addition to those used in et andes:
$ra,

$voO,
thefirst n of registers $ao0, $a1, $a2, and $a3, where n isthe smaller of 4 and length(es).

RETURN(n, TEMP(t)) usesregisterssra and $vO0 inaddition to t:

HALT('s) usesregisters$ao and $vo.

18

APPENDI X |: Thel RL Enumer ator

Within the back end --- especially within the Normal ToMIPS code generator --- it is sometimes
necessary to compute global properties of a program or function definition. For instance, we
might want to know what is the maximal index of a spill temporary within a function body, or a
list of al labels used for global variables within a program.

This sort of information could be collected in a standard recursive traversal of the IRL program.
For instance, to determine the maximal spill index of alist of statements, we could write a set of
mutually recursive functions that operate on statements, statement lists, expressions, and
expression lists. But every time we want to compute a different property, we need to write a
different set of mutually recursive definitions, which is tedious and error-prone.

An aternative that works for many properties is to decompose the property determination into
two processes: one that enumerates all the expressions and/or statements within atree, and
another that walks over the resulting list determining the property. It is often much easier to write
asingle function that walks over alist of IRL expressions than a set of mutually recursive
functions that process IRL statements and expressions.

As an example of the power of this approach, consider the problem of collecting a set of all the
temps used in alist of statements. First, let's assume that thereisa function | RLEnum expsSt ns
that returns alist of all expressions found in aleft-to-right preorder depth-first traversal of alist
of IRL statements. As a concrete example of expsSt s, suppose that SSis the following
statement list:

[MOVE(TEMP(spi | | . 3), TEVP($t2)),
MOVE(TEMP($t 5), BI NOP(PLUS, TEMP($t3), TEMP($t1))),
MOVE(TEMP($t 4), TEMP(arg. 2))]

Then expsSt ms(SS) would be the following list of expressions:

[TEMP(spill. 3),

TEMP($t 2) ,

TEMP($t 5),

Bl NOP(PLUS, TEMP($t3), TEMP($t 1))
TEMP($t 3) ,

TEMP($t 1))

TEMP($t 4),

TEMP(arg. 2)]

It isnow an easy matter to collect a set of all temporaries used within alist of statements as
follows:

(* Local abbreviation *)
structure TS = Tenp. TenpSet

fun all Tenps stnms =
et fun addTenp(TEMP(t),tenps) = TS. add(tenps,t)
| addTenp(_,tenps) = tenps
in List.foldr addTenp TS.enpty (| RLEnum expsStns stms)
end

This sure beats writing a big set of mutually recursive functions to accomplish the same task.
And the same expression enumerator can be reused to determine many such properties.

19

The | RLEnumstructure provides a set of such enumerators, both for the expressions within a
program phrase and for the statements within a program phrase. All of the following
enumerators lists the expressions (or statements) of the given phrase in the order that they would
be discovered in aleft-to-right pre-order traversal of the phrase:

val expsPgm: IRL.pgm-> IRL.exp list)))
Returns alist of al expression occurrences within a program, including those found in
the function declarations as well as those found in the main body of the program.

val expsStms : IRL.stmlist -> IRL.exp |ist)
Returnsalist of all expression occurrences within a statement list.

val expsStm: IRL.stm-> IRL.exp list
Returns alist of al expression occurrences within a statement.

val expsExps : IRL.exp list -> IRL.exp |ist _ o _
Returns alist of all expression occurrences within an expression list (including
subexpressions of the list components).

val expsExp : IRL.exp -> IRL.exp list .))
Returns alist of all expression occurrences within an expression (including the
expression itself and all immediate and non-immediate subexpressions of the expresion).

val stnmsPgm: IRL.pgm-> IRL.stmlist)) .
Returns alist of al statement occurrences within the program, including those found in
the function declarations as well as those found in the main body of the program.

val stmsStms . IRL.stmlist -> IRL.stmlist o)
Returnsalist of all statement occurrences within the statement list (including
substatements of the list components).

val stnmeStm: IRL.stm-> IRL.stmlist _ _
Returns alist of al statement occurrences within the statement (including the statement
itself and all immediate and non-immediate substatements of the statement).

val stnmsExps : IRL.exp list -> IRL.stmli st _)
Returns alist of al statement occurrences within an expression list.

val stmsExp : IRL.exp -> IRL.stmlist _
Returns alist of all statement occurrences within an expression.

20

Problem Set Header Page
Please make this the first page of your hardcopy submission.

CS301 Problem Set 7
Due Friday, December 8, 2000

Names of Team Members:
Date & Time Submitted:

Soft Copy Directory:

Collaborators (any teams collaborated with in the process of doing the problem set):

In the Time column, please estimate the total time each team member spent on the parts of this
problem set. (Note that spending less time than your partner does not necessarily imply that you
contributed less.) Please try to be as accurate as possible; thisinformation will help me to
design future problem sets. | will fill out the Score column when grading your problem set.

Part Time For Time For Score

(Team Member #1) (Team Member #2)

General Reading

Problem 1 [80]

Problem 2 [90]

Problem 3 [80]

Total [200]

21

