
CS301 Compiler Design and Implementation Handout # 9
Prof. Lyn Turbak September 16, 2003
Wellesley College

Intex

1 Introduction

An interpreter is a program written in one language (the target language or implementation lan-

guage) that executes a program written another language (the source language). The source and
target languages are typically different. For example, we might write an interpreter for Java in
Scheme. We would call such an interpreter a “Java interpreter”, naming it after the source lan-
guage, not the target language. It is possible to write an interpreter for a language in itself; such an
interpreter is known as a meta-circular interpreter. For example, chapter 4 of Abelson and Suss-
man’s Structure and Interpretation of Computer Programs presents a meta-circular interpreter
for Scheme. (Of course, a meta-circular interpreter involves the boot-strapping issues we have
considered earlier in our high-level discussions of interpretation and compilation.)

One of the best ways to gain insight into programming language design and implementation is
read, write, and modify interpreters and translators. We will spend a significant amount of time
in this course studying interpreters and translators. We begin with an intepreter for an extremely
simple “toy” language, an integer expression language we’ll call INTEX. To understand various
programming language features, we will add them to INTEX to get more complex languages.
Eventually, we will build up to more realistic source languages.

2 Abstract Syntax for INTEX

An INTEX program specifies a function that takes any number of integer arguments and returns
an integer result. Abstractly, an INTEX program is a tree constructed out of the following kinds
of nodes:

• A program node is a node with two components: (1) A non-negative integer numargs spec-
ifying the number of arguments to the program and (2) A body expression.

• An expression node is one of the following:

– A literal specifying an integer constant, known as its value;

– An argument reference specifying an integer index that references a program argu-
ment by position;

– A binary application specifying a binary operator (known as its rator) and two operand
expressions (known as rand1 and rand2).

• An binary operator node is one of the following five operators: addition, subtraction,
multiplication, division, or remainder.

These nodes can be be depicted graphically and arranged into trees. For example, Fig. 1 depicts
the trees denoting three sample INTEX programs: (1) a program that squares its single input,
(2) a program that averages its two inputs, and (3) a program that converts its single input, a
temperature measured in Fahrenheit, to a temperature measured in Centigrade. Such trees are

1

known as abstract syntax trees (ASTs), because they specify the abstract logical structure of
a program without any hint of how the program might be written down in concrete syntax. We
leave discussion of the concrete syntax of INTEX programs for another day.

Pgm

1

numargs

BinApp

body

Mul

rator

Arg

rand1

1

Arg

rand2

1

Pgm

2

numargs

BinApp

body

Div

rator

BinApp

rand1

Add

rator

Arg

rand1

1

Arg

rand2

2

Lit

rand2

2

value

Pgm

1

numargs

BinApp

body

Div

rator

BinApp

rand1

Mul

rator

BinApp

rand1

Sub

rator

Arg

rand1

1

Lit

rand2

32

value

Lit

rand2

5

value

Lit

rand2

9

value

Squaring program Averaging program Fahrenheit-to-Centigrade converter

Figure 1: Abstract syntax trees for three sample INTEX programs.

It is easy to express INTEX ASTs using OCaml datatypes. Fig. 2 introduces three types to
express the three different kinds of INTEX AST nodes:

1. The pgm type has a single constructor, Pgm, with two components (argnums and body);

2. The exp type is a recursive type with three constructors: Lit (for integer literals), Arg (for
argument references), and BinApp (for binary applications).

3. The binop type has five constructors, one for each possible operator.

Using these datatypes, the three sample trees depicted in Fig. 1 can be express in OCaml as shown
in Fig. 3.

type pgm = Pgm of int * exp (* numargs, body *)

and exp =

Lit of int (* value *)

| Arg of int (* index *)

| BinApp of binop * exp * exp (* rator, rand1, rand2 *)

and binop = Add | Sub | Mul | Div | Rem (* Arithmetic ops *)

Figure 2: OCaml datatypes for INTEX abstract syntax.

3 Manipulating INTEX Programs

INTEX programs and expressions are just trees, and can be easily manipulated as such. Here we
study three different programs that manipulate INTEX ASTs.

2

let sqr = Pgm(1, BinApp(Mul, Arg(1), Arg(1)))

let avg = Pgm(2, BinApp(Div,

BinApp(Add, Arg(1), Arg(2)),

Lit(2)))

let f2c = Pgm(1, BinApp(Div,

BinApp(Mul,

BinApp(Sub,Arg(1),Lit(32)),

Lit(5)),

Lit(9)))

Figure 3: Sample programs expressed using OCaml datatypes.

3.1 Program Size

Define the size of an INTEX program as the number of boxed nodes in the graphical depiction of
its AST. Then the size of an INTEX program can be determined as follows:

let rec sizePgm (Pgm(_,body)) = expSize body

and expSize e =

match e with

Lit i -> 1

| Arg index -> 1

| BinApp(_,r1,r2) -> 1 + (expSize r1) + (expSize r2)

The tree manipulation performed by expSize is an instance of a general fold operator on
INTEX expressions that captures the essence of divide, conquer, and glue on these expressions:

let rec fold litfun argfun appfun exp =

match exp with

Lit i -> litfun i

| Arg index -> argfun index

| BinApp(op,rand1,rand2) ->

appfun op

(fold litfun argfun appfun rand1)

(fold litfun argfun appfun rand2)

Using fold, we can re-express expSize as:

(* fold-based version *)

let expSize e =

fold (fun _ -> 1) (fun _ -> 1) (fun _ n1 n2 -> 1 + n1 + n2) e

3.2 Static Argument Checking

We can statically (i.e., without running the program) check if all the argument indices are valid by
a simple tree walk that determines the minimum and maximum argument indices:

3

let rec argCheck (Pgm(n,body)) =

let (lo,hi) = argRange body

in (lo >= 1) && (hi <= n)

and argRange e =

match e with

Lit i -> (max_int, min_int)

| Arg index -> (index, index)

| BinApp(_,r1,r2) ->

let (lo1, hi1) = argRange r1

and (lo2, hi2) = argRange r2

in (min lo1 lo2, max hi1 hi2)

Again, argRange can be expressed in terms of fold:

(* fold-based version *)

let argRange e =

fold (fun _ -> (max_int, min_int))

(fun index -> (index, index))

(fun _ (lo1,hi1) (lo2,hi2) -> (min lo1 lo2, max hi1 hi2))

e

3.3 Interpretation

An interpreter for INTEX is presented in Fig. 4. It determines the integer value of an INTEX

program given a list of integer arguments. In certain situations, it is necessary to indicate an error;
the EvalError exception is used for this.

Even the interpreter can be expressed in terms of fold!

(* fold-based version *)

let eval exp =

fold (fun i -> (fun args -> i))

(fun index ->

(fun args ->

if (index <= 0) || (index > List.length args) then

raise (EvalError("Illegal arg index: " ^ (string_of_int index)))

else

List.nth args (index - 1)))

(fun op fun1 fun2 ->

(fun args ->

primApply op (fun1 args) (fun2 args)))

exp

4

module IntexInterp = struct

open Intex

exception EvalError of string

let rec run (Pgm(n,body)) ints =

let len = List.length ints in

if n = List.length ints then

eval body ints

else

raise (EvalError ("Program expected " ^ (string_of_int n)

^ " arguments but got " ^ (string_of_int len)))

(* direct version *)

and eval exp args =

match exp with

Lit i -> i

| Arg index ->

if (index <= 0) || (index > List.length args) then

raise (EvalError("Illegal arg index: " ^ (string_of_int index)))

else

List.nth args (index - 1)

| BinApp(op,rand1,rand2) ->

primApply op (eval rand1 args) (eval rand2 args)

and primApply binop x y =

match binop with

Add -> x + y

| Sub -> x - y

| Mul -> x * y

| Div -> if y = 0 then

raise (EvalError ("Division by 0: "

^ (string_of_int x)))

else

x / y

| Rem -> if y = 0 then

raise (EvalError ("Remainder by 0: "

^ (string_of_int x)))

else

x mod y

end

Figure 4: An interpreter for INTEX.

5

