
CS301 Compiler Design and Implementation Handout # 11
Prof. Lyn Turbak September 17, 2003
Wellesley College

Problem Set 2
Due: Friday, September 26

Reading:

• Handout #9: Intex: An Introduction to Program Manipulation

• Handout #10: PostFix: A Simple Stack Language

• Handout #12: Testing

• Handout #13: S-Expressions, Parsing, and Unparsing

Submission:
Each team should turn in a single hardcopy submission packet for all problems by slipping it

under Lyn’s office door by 5pm on the due date (Fri, Sep 26). The packet should include:

1. a team header sheet (see the end of this assignment for the header sheet);

2. your final version of PostFixInterp.ml from Problem 1.

3. your final version of PostFix.ml from Problem 2.

4. your final version of PostFixInterpTest.ml from Problem 3.

Each team should also submit a softcopy submission of the final ps2 folder. To do this, execute
the following commands in Linux in the account of the team member being used to store the code.

cd /students/your-account-name/cs301

cp -R ps2 /home/cs301/drop/your-account-name/

High-Level Notes:

• If you work on a team for this assignment, you must choose a different partner than for PS1.

• Excluding Jue, there are an odd number of students in the class, which does not permit
everyone to work in teams of two. Kelsey, who worked alone on PS1, has first dibs on a
partner for PS2. I will consider a three-person team if it is proposed, but keep in mind that
scheduling meetings for 3-person teams may be very difficult!

• Although the problem set is phrased in terms of three separate problems, they are all part of
the same big problem (implementing a PostFix interpreter). In particular, you do not need
to complete them in order. Indeed, you will probably want to interleave work on the problems.
E.g., implement an interpreter for a simple subset of the language, test this interpreter, and
maybe implement a parser/unparser for this subset before handling more features.

• When editing OCaml code in Emacs, it is helpful to be in “Caml mode”. You can enter
Caml editing mode in a editor buffer via M-x caml-mode.

1

Problem 1 [60]: A PostFix Interpreter

Background:
In this problem, you will implement an interpreter for the PostFix language described in

Handout #10. As explained there, the abstract syntax of PostFix can be expressed in OCaml
via the following two datatypes for programs (pgm) and commands (com), which are already defined
for you in the module PostFix in the file PostFix.ml.1

type pgm = (* PostFix programs *)

Pgm of int * com list

and com = (* PostFix commands *)

Int of int (* push integer literal *)

| Str of string (* push string literal *)

| Seq of com list (* executable sequence *)

| Pop (* pop top value from stack *)

| Swap (* swap top two values of stack *)

| Sel (* choose one of two values from stack *)

| Get (* push value at given stack index *)

| Put (* store top of stack at given stack index *)

| Prs (* print string *)

| Pri (* print integer *)

| Exec (* execute sequence at top of stack *)

| Add | Sub | Mul | Div | Rem (* arithmetic ops *)

| LT | LE | EQ | NE | GE | GT (* relational ops *)

You will implement your interpreter in the module PostFixInterp. In addition to opening up the
PostFix module to make the syntax datatypes available, the PostFixInterp module defines the
following dataypes needed for the interpreter:

1. The interpreter manipulates a stack of values that may either be integers, strings, or exe-
cutable sequences. These stack values are modeled by the sval datatype:

type sval = (* stack values *)

IntVal of int

| StrVal of string

| SeqVal of com list

2. The “abstract machine state” manipulated by the PostFix interpreter consists of two parts:
(1) a list of commands and (2) a stack of values. In OCaml, an easy way to model the stack
is as a list. So the following state type represents the configuration manipulated by the
interpreter:

type state = com list * sval list

Note that this is not like other type definitions we have seen – it does not specify a constructor!
A constructorless type definition introduces a name that abbreviates a type. So state is just
a shorter name for the pair type com list * sval list.

3. The result of executing a PostFix program is either an integer or an error. This is modeled
by the ans datatype:

1We will follow the convention that modules are stored in files with the module name followed by a .ml suffix.

2

type ans = (* answers to executing PostFix programs *)

IntAns of int (* integer answer *)

| ErrAns of string (* error answer *)

In the PostFix interpreter, it is possible to model all error situations using the ErrAns

constructor. In contrast with the Intex interpreter, it is not necessary to use exceptions to
model any error situations.

Your Task:

To complete the PostFix interpreter, you will need to define two functions:

• val exec : state -> ans

Given a state (coms,svals), the exec function executes all of the PostFix commands coms
in the context of a stack consisting of the values svals. It returns an answer that is either
the integer at the top of the final stack or an error describing a state that is “stuck” (i.e., a
non-final state from which no progress can be made).

• val run : PostFix.pgm -> int list -> ans

Executes the given PostFix program on an integer list of arguments.

Your error messages should be chosen to accurately describe the type of error encountered. There
are lots of different error situations; make sure you handle them all!

Notes:

• As usual, start this problem set by performing a cvs update -d, and perform an update
every time you log in to work on this problem set.

• After launching OCaml, connect to the ps2 directory via #cd "/students/your-account-

name/ps2".

• To load all the appropriate files into OCaml, execute #use "load-postfix.ml". You will
need to execute this every time you want to test changes to your code. This loads many files,
including PostFix.ml, PostFixInterp.ml, and PostFixInterpTest.ml. Carefully look at
the output of the #use command each time you invoke it. Even if it finds and reports an
error in PostFix.ml, say, it will continue to load the other files, and it’s easy to miss the
error, especially if the error message has scrolled off the screen.

• The #trace directive can be very helpful for debugging a non-working exec function. The
tracing output is easiest to read if you invoke it as follows:

open PostFix;;

open PostFixInterp;;

#trace exec;;

• You should use any standard library functions from the standard modules that you find
helpful.

• You should not use any imperative features of OCaml (e.g. reference cells, array) to im-
plement your interpreter. Even though the state type is immutable (consisting of two im-
mutable lists), you can simulate changing state by creating a sequence of new state pairs in
a tail recursion rather than modifying existing ones in a loop.

3

• Pattern matching is your friend here. Use it to simplify your definitions.

• In addition to defining exec and run, you may need to define some auxiliary functions.

• When implementing the commands Prs and Pri, use StringUtils.unbufferedPrint instead
of print_string. The problem with print_string is that it “buffers” strings (potentially
for a long time) before printing them. If you want to ensure that something gets printed on
the console immediately, use StringUtils.unbufferedPrint.

• When printing values, it is necessary to sequence expressions. There are two styles of evalu-
ating expressions e1, e2, . . . , en in order in OCaml:

1. In the semi-colon style, semi-colons are used to sequence statements (like in Java and
C). It is often necessary to parenthesize the sequenced expressions as well. E.g.

(e1;e2;. . . ;en)

The value of such a sequence is the value of the last expression (en).

2. In the let style, lets are used to sequence the expressions used to sequence statements
(like in Java and C). It is often necessary to parenthesize the sequenced expressions as
well. E.g.

let _ = e1 in

let _ = e2 in
...

let _ = en−1 in

en

• It’s a good idea to implement, test, and debug a few commands at a time rather than at-
tempting to handle all the commands at once.

• You can test exec and run before you have completed Problem 2 by writing programs in
terms of abstract syntax rather than concrete syntax.

4

Problem 2 [15]: Parsing and Unparsing PostFix

Although it is possible to write all PostFix programs and commands using the OCaml AST
constructors, it is inconvenient to do so. In this part, you will implement the concrete s-expression
syntax for PostFix described in Handout #10 by implementing the following four functions in the
PostFix module:

• val sexp2Com : Sexp.sexp -> com

Parse an s-expression representation of a PostFix command into a value of type com.

• val sexp2Pgm : Sexp.sexp -> pgm

Parse an s-expression representation of a PostFix program into a value of type pgm.

• val pgm2Sexp : pgm -> Sexp.sexp

Unparse a value of type pgm into an s-expression representation of a PostFix program.

• val com2Sexp : com -> Sexp.sexp

Unparse a value of type com into an s-expression representation of a PostFix command.

Notes:

• Study the Intex examples of parsing and unparsing s-expressions in Handout #13 (and
Intex.ml) before attempting this problem.

• Because some sexp and com constructors have the same names (e.g. Int, Str, Seq), you
will need to qualify at least one set of constructor names with an explicit module name. It’s
simplest to use an explicit Sexp. prefix for all s-expression constructors.

• When a parser encounters an error, it should raise a SyntaxError exception with a single
string argument.

• Once the four above functions are defined, the following four functions that convert between
strings and PostFix programs and commands are easy to define:

let string2Com str = sexp2Com (Sexp.string2Sexp str)

let string2Pgm str = sexp2Pgm (Sexp.string2Sexp str)

let com2String c = Sexp.sexp2String (com2Sexp c)

let pgm2String p = Sexp.sexp2String (pgm2Sexp p)

5

Problem 3 [25]: Testing your PostFix interpreter
In this part, you will create an extensive test suite for your PostFix interpreter to show that

it behaves correctly in a wide variety of circumstances. In the module PostFixInterpTest you
should write a function val test : unit -> unit that exercises your PostFix interpreter on the
test suite.
Your test suite should include the following:

• All of the examples from Handout #10 (except the infinite loop example, of course).

• A two-argument PostFix program that implements the following OCaml gcd function:

let rec gcd a b =

if b = 0 then

a

else

gcd b (a mod b)

As part of this problem, you will need to figure out how to express a recursive function in
PostFix. (Hint: study the factorial example in Handout #10 and think very carefully about
the problem.) You should test your gcd program on a wide variety of inputs.

• Programs that cause each one of the error situations handled by your interpreter. That is,
you should make sure that your test suite “exercises” each error condition caught by your
interpreter.

Notes:

• Study Handout #12 and the Intex testing suite in intex/IntexInterpTest.ml before doing
extensive testing.

• Although you can use abstract syntax for simple testing, it would be too onerous to use it for
all testing. It is better to complete Problem 2 before doing extensive testing.

• When using string literals to write down PostFix programs that themselves contain strings,
be careful to use escape characters for embedded double quotes. For instance, the PostFix

program

(postfix 0 "foo" prs)

is written as a string literal as follows:

"(postfix 0 \"foo\" prs)"

6

Problem Set Header Page

Please make this the first page of your hardcopy submission.

CS301 Problem Set 2
Due Friday, September 26

Names of Team Members:

Date & Time Submitted:

Collaborators (anyone you or your team collaborated with on the problem

set):

In the Time column, please estimate the time you or your team spent on the parts of this problem

set. Team members should be working closely together, so it will be assumed that the time reported

is the time for each team member. Please try to be as accurate as possible; this information will

help me design future problem sets. I will fill out the Score column when grading you problem set.

Part Time Score

General Reading

Problem 1 [60]

Problem 2 [15]

Problem 3 [25]

Total

7

