
CS301 Compiler Design and Implementation Handout # 26
Prof. Lyn Turbak January 6, 2004
Wellesley College

Problem Set 3 Solutions

Problem 1 [50]: A Condex to PostFix Translator
Translation
A working Condex to PostFix translator is shown in Figs. 1–2. The key to transPgm is

definining an initial argMap function that translates Condex argument indices into offsets in the
PostFix stack. The fact that PostFix arguments appear in reverse order on the stack and used
0-based indexing rather than 1-based indexing leads to the formula n - i, where n is the number
of parameters to the program and i is the index of the Condex argument.
The transExps function effectively maps transExp over the given expression list and appends

the resulting PostFix commands together. But since each expression evaluation pushes a new
value on the stack, the argument map amap must be updated to account for this fact. This is
accomplished with the push function, which increments the PostFix stack position of of every
Condex argument index.
The transExp function dispatches on the kind of Condex expression. Literals are straightfor-

ward to handle, and the presence of the amap argument makes arguments references straightforward
as well. Branches translate into a selection between two executable sequences (one for each branch),
only one of which is executed. Wrapping the branches in executatble sequences is essential for pre-
serving the semantics that only one branch is executed.
The most complex case for transExp is handling primitive operator applications. Code is

generated for pushed the arguments of the application on the stack, and transPrimop is responsible
for generating the code that performs the application. Most Condex primitives correspond directly
to PostFix primtives. The interesting cases are Not, And, and Or. The tricky aspect of handling
these is that “true” can be represented as any non-zero number. There are many correct PostFix

command sequences for these operations; Fig. 2 gives some particularly concise solutions. Here are
a few other valid solutions:

• Not1: [P.Int(0); P.Int(1); P.Sel]

• And1: [P.Int(1); P.Int(0); P.Sel; P.Int(0); P.Sel]

And2: [P.Int(0); P.NE; P.Swap; P.Int(0); P.NE; P.Mul]

• Or1: [P.Int(1); P.Int(0); P.Sel; P.Int(1); P.Swap; P.Sel]

Or2: [P.Int(0); P.NE; P.Swap; P.Int(0); P.NE; P.Add; P.Int(0); P.NE]

And2 and Or2 are interesting in the sense that the make use of arithmetic properties of 0 and 1 to
perform boolean opertions. They suggest some very concise alternative solutions that unfortunately
are incorrect:

• And4-wrong: [P.Mul; P.Int(0); P.NE]. This fails because with finite integers can get 0
in other ways. E.g., with 4 bit ints, [8; 2; mul] is 0. In OCaml, which has 31 bit ints,
[32768;65536;mul] is 0. But (& 8 2) and (& 32768 65536) should be 1!

• Or4-wrong: [P.Add; P.Int(0); P.NE]. This fails because can also get 0 by adding an in-
teger to its additive inverse. E.g.[-1; 1; add] is 0, but (+ -1 1) should be 1.

1

module CondexToPostFix :

sig

exception TransError of string

val transPgm : Condex.pgm -> PostFix.pgm

val transExp : Condex.exp -> (int -> int) -> PostFix.com list

val transExps : Condex.exp list -> (int -> int) -> PostFix.com list

end

=

struct

exception TransError of string

(* Handy abbreviations *)

module C = Condex

module P = PostFix

let push amap = fun i -> (amap i)+1

let rec transPgm (C.Pgm(n,body)) =

let argMap i =

if (i <= 0) || (i > n) then

raise (TransError ("Illegal arg index: "

^ (string_of_int i)))

else

n - i (* account for fact that args are reversed on stack *)

in

P.Pgm(n, transExp body argMap)

(* Translate Condex expression [e1;e2;...;en] into a sequence of

PostFix commands that, when executed on a stack s

will yield a stack (vn::...::v2::v1::s), where vi is the value of ei.

The amap argument tracks the index of each Condex program argument

on the stack. *)

and transExps exps amap =

match exps with

[] -> []

| e::es -> (transExp e amap) @ (transExps es (push amap))

Figure 1: Condex to PostFix translator, Part 1.

2

(* Translate Condex expression exp into a sequence of

PostFix commands that, when executed on a stack s

will yield a stack (v::s), where v is the value of exp.

The amap argument tracks the index of each Condex program argument

on the stack. *)

and transExp exp amap =

match exp with

C.Lit n -> [P.Int n]

| C.Arg i -> [P.Int (amap i); P.Get]

| C.Bra (test,con,alt) ->

(transExp test amap)

@ [P.Seq (transExp con amap)]

@ [P.Seq (transExp alt amap)]

@ [P.Sel;P.Exec]

| C.PrimApp (op, rands) -> (transExps rands amap) @ (transPrimop op)

and transPrimop op =

match op with

C.Add -> [P.Add]

| C.Sub -> [P.Sub]

| C.Mul -> [P.Mul]

| C.Div -> [P.Div]

| C.Rem -> [P.Rem]

| C.LT -> [P.LT]

| C.EQ -> [P.EQ]

| C.GT -> [P.GT]

| C.Not -> [P.Int(0); P.EQ]

| C.And -> [P.Int(0); P.NE; (* convert 2nd arg to 0/1 *)

P.Int(0); P.Sel (* use 1st arg to choose result *)

]

| C.Or -> [P.Int(0); P.NE; (* convert 2nd arg to 0/1 *)

P.Int(1); P.Swap; P.Sel (* use 1st arg to choose result *)

]

end

Figure 2: Condex to PostFix translator, Part 2.

3

Testing
A complete testing program for the Condex to PostFix translator is shown in Fig. 3. The

tricky aspect of testing is making the output of executing the resulting PostFix program (an
instance of PostFixInterp.ans) compatible with the expected result in the Condex test suite
(an instance of CondexInterpTest.result). Fortunately, there is a straightforward relationship
between the two: each PostFixInterp.IntAns(i) corresponds to CondexInterpTest.Val(i), and
each CondexInterpTest.Err(s) corresponds to PostFixInterp.ErrAns(s).
There are many ways to address this incompatibility; here are two:

1. Transform the result of running the PostFix interpreter (an instance of PostFixInterp.ans)
into a instance of running the Condex interpreter (CondexInterpTest.result). This is the
approach taken in Fig. 3, where the ans2Result function performs this translation.

2. Transform theCondex test suite (where expected results are of type CondexInterpTest.result)
into a test suite where the expected results are of type PostFixInterp.ans. Doing this by
hand would be tedious, but it would not be difficult to write an OCaml function that auto-
matically performed the tranformation via something like an inverse to ans2Result.

4

module CondexToPostFixTest = struct

let ans2Result ans =

match ans with

PostFixInterp.IntAns(i) -> CondexInterpTest.Val(i)

| PostFixInterp.ErrAns(s) -> CondexInterpTest.Err(s)

module TransTester =

MakeTester (

struct

type prog = string

type arg = int

type res = CondexInterpTest.result

let trial progString args =

try

ans2Result

(PostFixInterp.run

(CondexToPostFix.transPgm

(Condex.string2Pgm progString))

args)

with

Condex.SyntaxError(str) -> CondexInterpTest.Err(str)

| CondexToPostFix.TransError(str) -> CondexInterpTest.Err(str)

let arg2String = string_of_int

let resEqual = (=)

let res2String = CondexInterpTest.result2String

end

)

let test () = TransTester.testEntries CondexInterpTest.entries

let trans s = PostFix.pgm2String (CondexToPostFix.transPgm (Condex.string2Pgm s));;

end

Figure 3: A complete testing program for the Condex to PostFix translator.

5

Problem 2 [50]: 6811 Programming

1. [15] gcd One way to calculate the GCD of two unsigned 16-bit numbers is presented in
Fig. 4. This solution also includes debugging code that displays the values of a and b at the
beginning of every iteration of the loop. The assembly code comments (here and in other
problems) are crucial for understanding the code and its invariants.

Note that pseudo-registers (other than prompt and wordread) are not necessary in this prob-
lem. Only registers D and X and one stack slot are necessary (not even Y is needed). Some
student solutions swapped the meanings of a and b; since gcd(a,b) = gcd(b,a), this can
still give the right answer, even if the code is “wrong”.

2. [15] follow-light One approach to the light-following problem is presented in Fig. 5. This
solution uses the difference between the left and right photocell sensors to determine which
way the SciBorg should turn. This is more robust than comparing the individual sensors to
a threshold. Note that only the A and B registers are needed; the tab and cba instructions
are very useful in this regard.

Several teams got confused and programmed the robot to turn away from the light. There
were several sources of confusion: (1) the fact that high photocell values indicate low amounts
of light; some teams assumed the opposite; (2) turning on the left motor turns the SciBorg
right, not left; (3) some teams were confused which sensors were attached to which sensor
ports and which motors were attached to which motor ports.

3. [20] display-binary One approach to displaying the binary representation of an unsigned
16-bit number is presented in Fig. 6 The key to this solution is using recursion (in conjunction
with the HandyBoard stack) to display the bits on the way out of the recursion.

The code in Fig. 6 is clever and concise, combining the best ideas from my original solution
and student solutions. The lsrd instruction is a much cheaper way to divide by 2 than
using idiv (3 cycles vs. 41!), and remainder by 2 can be calculated via andb #1 (2 cycles).
Performing andb #1 after the recursive call means that D is not altered before the call and
only register B (not all of D) needs to be saved across the call. The fall-through before
db-base-case: prevents duplicating two lines of assembly code. Calling the prolog routine
display-bit (after cmpb #0) is cheaper than calling display-unsigned-byte-b or (even
more expensive) display-unsigned-word. The tail call jmp display-bit is an optimization
over the sequence jsr display-bit rts.

Isn’t hacking assembly code fun?

6

;;; --

;;; GCD

;;; Prompts the user for two unsigned 16-bit numbers in the top row of the LCD

;;; and display the GCD of these in the bottom row. The result should also be

;;; returned in the D register. Returns to main menu when STOP button is pressed.

gcd:

ldd #gcd-a ; Read input A from user

std prompt

jsr read-unsigned-word

ldd wordread ; D holds A.

xgdx ; X now holds A, D is garbage

ldd #gcd-b ; Read input B from user

std prompt

jsr read-unsigned-word

ldd wordread ; Now D holds B and X holds A

xgdx ; Now D holds A and X holds B

gcd-loop: ; Invariant: D holds A, X holds B.

jsr lcd-clear ; Begin debugging code

pshx ; Save X (B), since will be overwritten

ldx #gcd-a ; Display "a="

jsr display-string

jsr display-equal

jsr display-unsigned-word ; Display A

jsr display-space ; Display " b="

ldx #gcd-b

jsr display-string

jsr display-equal

pulx ; Restore X (B), since will be overwritten

xgdx ; Now D holds B and X holds A

jsr display-unsigned-word ; Display B

xgdx ; Now D holds A and X holds B

ldy #20 ; Wait for 2 seconds

jsr wait ; End debugging code

cpx #0 ; Base case: is A=0?

beq gcd-done ; If so, we’re done!

pshx ; Save B

idiv ; D = A mod B (overwrites X)

pulx ; Restore B in X

xgdx ; Now D has B and X has A mod B

bra gcd-loop ; Deja vu all over again!

gcd-done:

jsr lcd-bottom

jsr display-unsigned-word ; Displays contents of D (= A)

jmp wait-for-stop ; Tail call to wait-for-stop

gcd-a:

fjs "a"

gcd-b:

fjs "b"

Figure 4: 6811 assembly code for calculating the GCD of two unsigned 16-bit numbers.

7

;;; --

;;; FOLLOW-LIGHT

;;; Causes SciBorg to follow a light using the two photosensors at the

;;; front of the vehicle. Use the difference between the photosensor readings

;;; to determine which motor is on. Stop when STOP button pressed or when

;;; either bumper is pressed.

follow-light:

ldx #digital-in

brclr 0,X $40 flt-done ; Done when STOP pressed

ldx #porta ; Switch 7 @ bit 0; switch 8 @ bit 1

brclr 0,X $01 flt-done ; Done when front bumper pressed

brclr 0,X $02 flt-done ; Done when back bumper pressed

ldaa #2 ; Read left photocell

jsr analog-read

jsr lcd-clear ; Debugging code: display left reading

jsr display-unsigned-byte-a

jsr display-space

tab ; Move left reading to b

ldaa #3 ; Read right photocell

jsr analog-read ; and store in A

jsr display-unsigned-byte-a ; Debugging code: display right reading

jsr wait-100msec

cba ; Set CCR based on A-B

; is right greater than left?

; i.e. does right have *less* light than left?

bhi flt-gt ; If yes, branch to FLT-GT

ldaa #$10 ; Else turn right (to increase left light)

staa motor-port

bra follow-light ; Repeat

flt-gt:

ldaa #$20 ; Turn left (to increase right light)

staa motor-port

bra follow-light ; Repeat

flt-done:

ldaa #$00 ; Stop motors

staa motor-port

rts

Figure 5: 6811 assembly code that causes a SciBorg to follow a flashlight.

8

;;; --

;;; DISPLAY-BINARY

;;; Prompts the user for an unsigned 16-bit number on the top row of the LCD

;;; and displays the binary representation of this number (without leading zeroes)

;;; in the bottom row. Returns to main menu when STOP button is pressed.

display-binary:

ldd #db-prompt ; Read input N from user

std prompt

jsr read-word

ldd wordread ; D holds N

jsr lcd-bottom

jsr dispbin ; Call recursive function

jmp wait-for-stop ; Tail call to wait-for-stop

;;; DISBIN: displays in binary the value in the D register,

;;; using a recursive algorithm

dispbin:

cpd #1 ; Base case: N <= 0

bls db-base-case

pshb ; Save lower byte, which has N mod 2 in it

lsrd ; Divide by 2 (*much*) cheaper than IDIV

jsr dispbin ; Display all but last bit

pulb ; Restore lower byte

andb #1 ; Mask lowest order bit

; And fall through to display

db-base-case:

cmpb #0

jmp display-bit ; Tail call to prolog routine

db-prompt:

fjs "n"

Figure 6: 6811 assembly code for displaying the binary representation of an unsigned 16-bit number.

9

