
CS301 Compiler Design and Implementation Handout # 28
Prof. Lyn Turbak January 6, 2004
Wellesley College

Problem Set 5 Solutions

Note: This assignment was posted with four problems, but the fourth problem was eventually

dropped. I increased the point values of the other problems to add up to 100 points.

Problem 1 [50]: Robster = Loopster + Robotic Primitives
In this problem, you were asked to extend Loopster with Robster’s robotic primitives.

Voidops
Let’s begin with the voidops:

and compVoidop op senv =

match op with

(* ... Loopster voidops omitted here ... *)

| Wait -> gen [Xgdy; (* Move tenths to Y register *)

Jsr (Ext (AddrLabel "wait"))]

| Clear -> gen [Jsr (Ext (AddrLabel "lcd-clear"))]

| Top -> gen [Jsr (Ext (AddrLabel "lcd-top"))]

| Bottom -> gen [Jsr (Ext (AddrLabel "lcd-bottom"))]

| TalkTo -> gen [Jsr (Ext (AddrLabel "talk-to"))]

| On -> gen [Jsr (Ext (AddrLabel "motors-on"))]

| Off -> gen [Jsr (Ext (AddrLabel "motors-off"))]

| Toggle -> gen [Jsr (Ext (AddrLabel "motors-toggle"))]

| This -> gen [Jsr (Ext (AddrLabel "motors-this-way"))]

| That -> gen [Jsr (Ext (AddrLabel "motors-that-way"))]

| Rd -> gen [Jsr (Ext (AddrLabel "motors-reverse"))]

The wait, clear, top, and bottom operations are straightforward, since they just call prolog
subroutines. The motor operations are more challenging. To simplify matters, we assume that
each compiles to subroutine call. This is probably a good idea, since the subroutine body will
only appear once in the compiled code rather than at every invocation of the motor operation,
potentially leading to much smaller code.1

Manipulating the motors requires controlling an 8 bits byte: the high four bits control power
(0=off, 1=on), and the low four bits control direction (0=this-way (green),1=that-way (red)).
(Four bit quantities are also known as nibbles; there are two nibbles in a byte.) Writing such
byte to address $7000 changes the motor state. A complication is that there is no way to read

the motor state from the HandyBoard. Since some of the motor manipulations implied by the
motor operations require knowing the motor state, this state must be kept by the generated code.
A natural way is to maintain the state in a motors-state pseudo-variable.

motors-state: ; High 4 bits = on/off, low 4 bits = direction

fcb 0

We also need to maintain the selected set of motors (as specified by talk-to). Conceptually,
the selection information is four bits (one for each motor) = one nibble. Since this nibble will

1This is not always the case, though. Including a subroutine for every motor operation can sometimes increase the
code size if the operation is never called. It would be best to include the subroutine only if the operation is invoked
at least once (perhaps even twice). Also, note that calling a subroutine incurs a run-time overhead compared with
generating the operation code “in-line”. This is a classic time/space tradeoff in compilation. In the case of robot
controllers with small memories, space is usually at a premium, and so we tend to optimize for smaller code.

1

often be combined with the power (high) nibble of motors-state and the direction (low) nibble
of motors-state, it is reasonable to keep two copies of the selection nibble: a copy (motors-low)
in which the selection bits are in the low nibble of a byte (and the high nibble is 0); and a copy
(motors-high) in which the selection nibble are at the high nibble of a byte (and the low nibble is
0):

motors-low: ; Selected motors as low nibble, 0 as high

fcb 0

motors-high: ; Selected motors as high nibble, 0 as low

fcb 0

In this approach, the talk-to subroutine sets both motors-low and motors-hi:

talk-to:

cpd #15

bhi invalid-motor-set

stab motors-low

aslb ; Perform 4 left shifts to make high

aslb

aslb

aslb

stab motors-high

rts

invalid-motor-set:

jsr lcd-clear

ldx #invalid-motor-string

jsr display-string

jsr lcd-bottom

jsr display-unsigned-word

jsr wait-for-stop

jmp main-loop ; Evaluate again when stop pressed

invalid-motor-string:

fjs \"Invalid motors:\"

Note that the bhi test is an unsigned test, and thus correctly handles any number outside the range
[0−15]. The four left shift operations aslb could alternatively be expressed via ldaa #16 mul, but
this requires 12 cycles and the four aslb instructions require onely 8 cycles. In other approaches,
the shifts can be performed instead in the on, this-way, etc. operations, but performing them in
talk-to usually ends up performing fewer shifts overall.
Turning motors on is straightforward — ORing the selected bits with the motor state does the

trick:
motors-on:

ldaa motors-high

oraa motors-state ; Turns on selected motors; other motors unchanged

staa motors-state

staa motor-port

rts

Since all direction bits in motors-high are 0, the OR operation leaves directions unchanged.
Toggling motors is similar, except we XOR the selected bits with the motor state:

motors-toggle:

ldaa motors-high

eora motors-state ; Toggles selected motors; other motors unchanged

staa motors-state

staa motor-port

rts

2

Again, since all direction bits in motors-high are 0, the XOR operation (eora) leaves directions
unchanged.
Turning motors off is a little bit trickier:

motors-off:

ldaa motors-high

eora #$ff ; Invert all bits; after, all direction bits are 1

anda motors-state ; Turns off selected motors; other motors unchanged

staa motors-state

staa motor-port

rts

Inverting the selection bits puts a 0 in each selected bit position, and the AND operation turns off the
motors at these positions. Since each unselected power bit and each direction bits in motors-high

is 0, its inverse is 1, so the AND operation will not change the value of any bit positions other than
the selected ones. It is possible to replace eora #$ff by eora motors-state without changing the
behavior, but the former is more efficient than the latter (2 cycles vs. 4 cycles).
Each of the on/off operations has its analog in the direction operations, the only difference

being that the low nibble of motors-state is manipulated rather than the high nibble.

• motors-that-way is like motors-on:

motors-that-way:

ldaa motors-low

oraa motors-state ; Sets selected motors that-way; other motors unchanged

staa motors-state

staa motor-port

rts

• motors-reverse-way is like motors-toggle:

motors-reverse:

ldaa motors-low

eora motors-state ; Reverses selected motors; other motors unchanged

staa motors-state

staa motor-port

rts

• motors-this-way is like motors-off:

motors-this-way:

ldaa motors-low

eora #$0f ; Invert all bits; after, all power bits are 1

anda motors-state ; Sets selected motors this-way; other motors unchanged

staa motors-state

staa motor-port

rts

Valops
Now we’ll consider the two valops: sensor and switch. As with the voidops, it makes sense

for these to be subroutines:

and compValop op senv =

match op with

(* ... Loopster valops omitted here ... *)

| Sensor -> gen [Jsr (Ext (AddrLabel "sensor"))]

| Switch -> gen [Jsr (Ext (AddrLabel "switch"))]

3

The sensor subroutine is the more straightforward one. It involves calling analog-read after
checking the port number is in range:

sensor: ; Sensor port should be 0--7 in B

cpd #7

bhi port-out-of-range

tba ; Move port to A

jsr analog-read ; Answer in A

tab ; Move result to B

clra ; Clear high bits of D; result now in D

rts

port-out-of-range:

ldx #invalid-port-string

jsr display-string

jsr display-unsigned-word

jsr wait-for-stop

jmp main-loop ; Evaluate again when stop pressed

invalid-port-string:

fjs \"Invalid port:\"

The switch subroutine is much more challenging (Fig. 1), because there are many special cases:

• Any unsigned port number > 17 is out of range. As in sensor, the bhi instruction is the
right thing here.

• Performing switch on an analog port must compare the analog reading to a threshold (=
127). Readings less than the threshold register as true (remember, low readings are generally
“a lot” of the quantity sensed) while high readings register as false.

• The rest of the ports (7–17) are digital – i.e., they denote a single bit. But ports 7–9 come
from bits 1,2, and 8 of porta, while ports 10–17 come from bits 1–8 of digital-in. How can
these special cases be handled without a rat’s nest of conditionals?

Selecting between porta and digital-in can be done via a single branch, and joining the
two arms of the branch (at switch-digital-join) avoids duplicating code. After this join,
it is assumed that the appropriate byte is in register A.

Now, how do we deal with the non-uniform mapping between port numbers and bit positions?
What we’d really like is a function that returns the bit position given the port number. We
can get this by looking up the port in an assembly code table that stores the bit position
of port p at address #port-mask-table + p, where #port-mask-table is the address of
the first byte in the table. In Fig. 1, the first seven bytes of the table are never used and
are arbitrarily set to 0. We can avoid storing these seven bytes if we index the table at
#port-mask-table + p + 7 instead of at #port-mask-table + p. Again we have a tradeoff:
are seven bytes of space worth several cycles to perform an addition every time switch is
called? Since seven bytes is very small, I have made the tradeoff to reduce run-time, but the
other option is reasonable, too.

4

switch: ; Switch port should be 0--17 in B

cpd #17

bhi port-out-of-range

cmpb #6 ; Switches 0-6 are analog sensor ports

bhi switch-digital

switch-analog: ; Analog ports (0-255) handled specially

tba ; Move port in B to A

jsr analog-read ; Analog answer in A; need to compare to 127

anda #$80 ; Mask high bit: if = 1, > 128; else <= 127

eora #$80 ; Invert high bit to get result

clrb ; Clear bits in B; now D contains bool result

rts

switch-digital: ; Digital port 7-17 in B

cmpb #9 ; Do we read from PORTA or DIGITAL-IN?

bhi switch-digital-digital-in

switch-digital-porta:

ldaa porta

bra switch-digital-join

switch-digital-digital-in:

ldaa digital-in

switch-digital-join: ; Sensed byte now in A; port in B

ldx #port-mask-table ; Load address of mask table into X

abx ; Add B to X, which now has mask address

anda 0,X ; Masked switch now in A

eora 0,X ; Invert switch bit

clrb ; Clear B bits; now D contains bool result

rts

port-mask-table:

fcb 0 ; switch 0

fcb 0 ; switch 1

fcb 0 ; switch 2

fcb 0 ; switch 3

fcb 0 ; switch 4

fcb 0 ; switch 5

fcb 0 ; switch 6

fcb $01 ; switch 7

fcb $02 ; switch 8

fcb $80 ; switch 9

fcb $01 ; switch 10

fcb $02 ; switch 11

fcb $04 ; switch 12

fcb $08 ; switch 13

fcb $10 ; switch 14

fcb $20 ; switch 15

fcb $40 ; switch 16 = STOP

fcb $80 ; switch 17 = START

Figure 1: Implementation of the switch subroutine.

5

The clever code for returning booleans after jsr analog-read and abx is due to Amrutha
Nagarajan and Jue Wang. This code takes advantage of the fact that any non-zero value
counts as true in Robster. There are many other correct, but less efficient, strategies. For
example, the instructions

anda #$80 ; Mask high bit: if = 1, > 128; else <= 127

eora #$80 ; Invert high bit to get result

clrb ; Clear bits in B; now D contains bool result

rts

could be replaced by

cmpa #$80 ; 128 is the threshold:

bhs switch-analog-false ; >= 128 is considered false

switch-analog-true: ; <= 127 is considered true

ldd #1

rts

switch-analog-false:

ldd #0

rts

Excluding the common rts instruction, the former instruction sequence costs 6 cycles while
the latter costs 7 cycles (and is longer in code size).

Problem 2 [25]: Exit and continue
Conceptually, the exit and continue constructs manipulate the test and done labels of the

innermost enclosing while loop: exit jumps to the done label while continue jumps to the test
label. To implement these constructs in the Robster compiler, we adopt the following strategy:

• extend the compStm function to pass the “current” while test and done labels as extra infor-
mation to every recursive call of compStm. This way, each occurence of exit or continue in
a while body will “see” the correct labels.

There are many ways to pass the label information. We choose to pass them as a pair of
names (strings) called labs:

and compStm stm senv labs = ...

(* labs is a new argument that denotes a pair of

while loop test/done labels *)

• Change the top-level call to compStm in compile to pass “default” label information indicating
that the current statement is not inside a loop. We use the string pair ("","") for this
purpose:

let rec compile (Pgm(fmls,body)) =

let senv0 = SEnv.make fmls

in

seq (glue [beginCode fmls senv0;

compStm body senv0 ("","");

endCode ()])

• change the while clause of compStm to pass the test and done labels of the while loop to the
call of compStm on the loop body (see the line marked (***) below):

6

| While(test,body) ->

(* while loop that executes body stm as long as test exp is true *)

let testLabel = newLabel "whileTest"

and bodyLabel = newLabel "whileBody"

and doneLabel = newLabel "whileDone"

in glue [

gen [Label testLabel];

compExp test senv;

(* Convention: 0 is false, anything else is true *)

gen [Cpd (Imm (ImmWord 0));

Bne (BraLabel bodyLabel);

Jmp (Ext (AddrLabel doneLabel));

Label bodyLabel]; (* Need to jump in case bodyInstrs is large *)

compStm body senv (testLabel, doneLabel);

gen [Jmp (Ext (AddrLabel testLabel));

Label doneLabel]

]

• Add a clause to compStm that handles exit by jumping to the done label. When the empty
string label is encountered, it means the exit is not within a while loop, and an error is
signalled:

| Exit -> (match labs with

(_,doneLabel) ->

if doneLabel = "" then

raise (CompError "exit not within a while loop")

else

gen [Jmp (Ext (AddrLabel doneLabel))])

• Add a clause to compStm that handles continue by jumping to the test label. When the
empty string label is encountered, it means the continue is not within a while loop, and an
error is signalled:

| Cont -> (match labs with

(testLabel,_) ->

if testLabel = "" then

raise (CompError "exit not within a while loop")

else

gen [Jmp (Ext (AddrLabel testLabel))])

• Change all other clauses of compStm to pass labs unchanged to any recursive calls of compStm.

Problem 3 [25]: Desugaring
In this problem, you were asked to implement five new Robster desugarings by extending the

desugarRules function. Below, we give desugaring rules and OCaml desugarRules code for each
desugaring:

1. loop: The desugaring rule for loop is

(loop Sbody) ⇒ (while true Sbody),

which can be expressed via the following desugarRules clause:

| S.Seq [Sym "loop"; stm] -> S.Seq [Sym "while"; Sym "true"; stm]

7

2. wait-until: The desugaring rule for wait-until is

(wait-until E) ⇒
(seq (while E (skip))

{Reach here when E is false.}
(while (! E) (skip))

{Reach here when E is true (after having been false).}

),

which can be expressed via the following desugarRules clause:

| S.Seq [Sym "wait-until"; exp] ->

S.Seq [Sym "seq";

S.Seq [Sym "while"; exp; S.Seq [Sym "skip"]];

S.Seq [Sym "while"; S.Seq [Sym "!"; exp]; S.Seq [Sym "skip"]]]

3. ++: The desugaring rule for ++ is

(++ I ⇒ (<- I (+ I 1))),

which can be expressed via the following desugarRules clause:

| S.Seq [Sym "++"; Sym var] ->

S.Seq [Sym "<-"; Sym var; S.Seq [Sym "+"; Sym var; Int 1]]

4. +=: The desugaring rule for += is

(+= I E) ⇒ (<- I (+ I E)),

which can be expressed via the following desugarRules clause:

| S.Seq [Sym "+="; Sym var; exp] ->

S.Seq [Sym "<-"; Sym var; S.Seq [Sym "+"; Sym var; exp]]

5. for: The desugaring rule for for is

(for I Elo Ehi Sbody) ⇒
(decl I Elo

(decl Ihi Ehi {Ihi is fresh}
(while (< I Ihi)

(seq Ebody (++ I))))),

which can be expressed via the following desugarRules clause:

| S.Seq [Sym "for"; Sym var; loExp; hiExp; body] ->

let hiVar = freshId ()

in S.Seq [Sym "decl"; Sym var; loExp;

S.Seq [Sym "decl"; Sym hiVar; hiExp;

S.Seq [Sym "while";

S.Seq [Sym "<"; Sym var; Sym hiVar];

S.Seq [Sym "seq";

body;

S.Seq [Sym "++"; Sym var]]]]]

8

