CS301 Compiler Design and Implementation Handout # 22
Prof. Lyn Turbak November 12, 2003
Wellesley College Revised November 16, 2003

Problem Set 5
Due: Wednesday, November 19

Reading;:
Carefully study the code for the BINDEX and LOOPSTER compilers discussed in class.

Teams:
Work in pairs, and try to choose partners that you have not worked with before.

Submission:
Each team should turn in a single hardcopy submission packet for all problems by slipping it
under Lyn’s office door by midnight on the due date (Wed, Nov. 19). The packet should include:

1. a team header sheet (see the end of this assignment for the header sheet);
2. your final versions of Robster.ml and RobsterToHB16.m1 for Problems 1, 2 and 3.

3. your final version of RobsterToPostFix (if you choose the LOOPSTER to POSTFIX translator
for Problem 4) or your final version of PostFixToHB16Typed (if you choose the dynamically
typed POSTFIX compiler for Problem 4).

FEach team should also submit a softcopy submission of the final ps5 folder. To do this, execute
the following commands in Linux in the account of the team member being used to store the code.

cd /students/your-account-name/cs301
cp -R ps5 /home/cs301/drop/your-account-name/

Problem 1 [25]: ROBSTER = LOOPSTER + Robotic Primitives

In this problem, you will create a robot control language named ROBSTER by extending Loop-
STER with the robotic primitives in Fig. 7?7. These primitives are similar to those that are found
in “real” robot control languages like HandyLogo and Interactive C. Combining these primitives
with the naming, state, and control features of LOOPSTER yields a language in which many simple
robot programs are much easier to express than in low-level 6811 assembly code

Below are some sample ROBSTER programs that illustrate the primitives in action.

(robster () {SciBorg ping-pong program}
(seqx (talk-to 3) {Motors O and 1}
(this-way) (on) {Go forward}
(while true {Infinite loop}
(seqg*
(while (switch 7) (skip))
(while (! (switch 7)) (skip))
(that-way) {Go backward if front bumper pressed}
(while (switch 8) (skip))
(while (! (switch 8)) (skip))
(this-way) {Go forward if back bumper pressed}
)DDD)

(robster () {SciBorg light-following program}
(seq* (talk-to 3) (this-way) (on) {Go forward}
(while true
(if (> (semsor 2) (semnsor 3)) {Right eye sees more light}
(seqx (talk-to 1) (on) (talk-to 2) (off) {Turn right}
(clear) (print-string "right"))
(seq* (talk-to 1) (off) (talk-to 2) (on) {Turn left}
(clear) (print-string "left"))
))))

(robster (black) {SciBorg line-following program; black is threshold }
(seq* (talk-to 3) (this-way) (on) {Go forward}
(while true
(segx*

(if (> (semsor 0) black) {Left eye sees black}
(seq* (talk-to 1) (on) (talk-to 2) (off))) {Turn right}

(if (> (semsor 1) black) {Right eye sees black}
(seq* (talk-to 1) (off) (talk-to 2) (om))))))) {Turn left}

(robster () {SciBorg "escape" program}
(seq* (talk-to 3) (on) (this-way) {Go forward}
(while true
(segx*

(while (switch 7) (skip)) {Wait until front bumper hits obstacle}
(while (! (switch 7) (skip))) {Wait until front bumper hits obstacle}
(rd) (wait 20) {Back up for 2 seconds}
(talk-to 1) (rd) (wait 10) {Turn right for 1 second}
(talk-to 2) (rd) {Go forward again}
(talk-to 3)))))

A skeleton for the ROBSTER implementation can be found in the “/cs301/ps5 directory:

e The module Robster is a version of the Loopster syntax module that has been extended to
support the robotic primitives.

e RobsterInterp is a version of the LoopsterInterp interpreter module that ignores the void
primitives and always returns false for switch and O for sensor.

e RobsterTest includes various ROBSTER test programs, including the ones shown above.

e The module RobsterToHB16 is a version of the LoopsterToHB16 compiler that contains skele-
ton clauses for compiling the Robster primitive operators in compValop and compVoidop.

To complete this problem, flesh out the skeletons of the robotic primitives in compValop and
compVoidop.

Notes:
e You can load ROBSTER into OCAML for the first time via:

(#cd "/students/username/cs301/ps5")
(#use "load-robster-all.ml")

Valops

S-Expression syntax

OCaml syntax

Description

(sensor sensor-port)

Sensor

Returns an integer between 0 and 255 that indicates
the value reported by the sensor at port sensor-port.
There are 8 sensor ports: the ports labelled 0-6 on the
lower edge of the HANDYBOARD, as well as 7 (the frob
knob).

(switch switch-port)

Switch

Returns true if the switch at port switch-port is cur-
rently “on” and false if the switch is “off”. There
are 18 switch ports: the ports labelled 0-15 on the
lower edge of the HANDYBOARD, as well as 16 (STOP
button) and 17 (START button).

Voidops

S-Expression syntax

OCaml syntax

Description

(wait tenths) Wait Waits (holds control) for tenths tenths of a second.
(clear) Clear Clears the LCD display.
(top) Top Set the LCD cursor to the top left.
(bottom) Bottom Set the LCD cursor to the bottom left.

(talk-to motors) TalkTo Specifies the current motor set by a single integer mo-
tors that is the sum of the motor tags of all the motors
in the set:

Motor number | Motor tag
Motor 0 1
Motor 1 2
Motor 2 4
Motor 3 8
E.g. (talk-to 13) established Motors 0, 2, and 3 as
the current motor set because 13 =1+ 4 + 8. When
the HandyBoard is turned on, the current motor set is
empty.
(on) On Turns on all motors in the current motor set.
(off) 0ff Turns off all motors in the current motor set.
(toggle) Toggle Toggles the on/off state of all motors in the current
motor set — i.e., it turns off motors that are currently
on and turns on motors that are currently off.
(this-way) This Sets the directions of all motors in the current set to
“this way” (i.e., represented by the green LED). The
LED will only be lit if the motor is also on.
(that-way) That Sets the directions of all motors in the current set to
“that way” (i.e., represented by the red LED). The
LED will only be lit if the motor is also on.
(rd) Rd Reverses the direction of all motors in the current mo-

tor set.

Figure 1: ROBSTER robotic primitives.

This will load many files. After executing the above once, you can reload just the four
ROBSTER modules Robster, RobsterInterp, RobsterToHB16, and RobsterTest by executing
(#use "load-robster.ml").

e To parse, compile, assemble, and download the sample programs in RobsterTest, execute
RobsterTest.ctest RobsterTest.name, where name is the name of the program string
in RobsterTest. In addition to the sample programs shown above, RobsterTest also in-
cludes the following test programs that are very helpful for testing your robotic primitives:
analogTest, digitalTest, on0ffTest, toggleTest, thisThatTest, and rdTest.

e Many primops can be implemented by just invoking an appropriate subroutine in the library
file “/cs301/hcl1l/prolog.asm. For other primops, it is helpful to define new subroutines in
your compiled code.

e Many of the problems involve manipulating particular bits in a byte. For this manipulations,
you will find the following operations helpful: anda/andb, oraa/orab (inclusive or), and
eora/eorb (exclusive or).

e For the switch primitive, note the following:

— Analog sensor ports 0—6 can be interpreted as switches by treating values of 0-127 as
true and 128-255 as false.

— Digital switch ports 7, 8, and 9 come from bits 1, 2, and 8 (respectively) of the byte read
from porta (address $1000).

— Digital switch ports 10-15, STOP (switch 16), and START (switch 17) come from bits
1-8 (respecively) of the byte read from digital-in (address $7000).
— You must report an error if the argument to switch is out of the range 0-17.

— Try to avoid using too many tests and branches in your implementation of switch.

— When testing your switch primop with test-digital, testing the START button is a
bit tricky because of the way wait-for-start-stop is used to handle printing operations
in the rest of the compiler.

e For the motor primitive, note the following:

— Motors are controlled by writing a byte to motor-port (address $7000). The lower four
bits of the byte control direction of the four motors (0 = this-way, 1 = that-way), while
the upper four bits of the byte control the on/off status of the four motors (0 = off, 1 =
on).

— The motor commands on, off, toggle, this-way, that-way, and rd only affect the
motors in the motor set established by the most recent call to talk-to. The state of
any motor not in this set is not affected by any of these commands.

— You must report an error if the argument to talk-to is out of the range 0-15.

Problem 2 [20]: Exit and continue

In programming languages with looping constructs, it is sometimes helpful to alter the normal
flow of control through a loop. In this problem, you will extend ROBSTER with the following two
loop control statements:

S-Expression syntax | OCaml syntax | Description

(exit) Exit Exits from the innermost enclosing while loop without
executing any more of the loop body or test code.
(continue) Cont Jumps to the "top” of the innermost enclosing while
loop (i.e., the loop test) without executing the rest of
the loop body in the current iteration.

It is an error if exit or continue are invoked in code that is not inside the body of a while loop.
This error can be detected at compile time.
As an example of exit and continue in action, consider the following ROBSTER program:

(robster (lo hi)
(decl sum O
(decl i lo
(seq
(while (<= i hi)
(segx*
(if (= (% i 42) 0) (exit)) {Stop at multiples of 42}
(if (= (% i 13) 0) {Exclude multiples of 13}
(seq (<= i (+ 1 1)) (continue)))
(<- sum (+ sum i))
(<= i (+ 1 1))
(print-result sum))))

The program sums the numbers between 1o and hi. Multiples of 13 are excluded from the sum by
using continue to avoid updating the sum in this case. Whenever a multiple of 42 is encountered,
the program exits immediately with the current sum. For example:

lo | hi result

1 10 55 (= (14+10)*(10/2)

10 | 30 | 381 (= (104+30)*(21/2) - 13 - 26)
38 | 50 119 (= 38 + 40 + 41)

80 | 100 326 (= 80 + 81 + 82 + 83)

Note that exit and continue only affect control in the innermost enclosing while loop and
have no effect on any other enclosing while loop. For example, consider the ROBSTER program
with nested while loops in Fig. ?7?7. When invoked on the input 5, this program prints out the
following sequence of integers:

11 21 31 33 41 43 51 53

In this problem, you are to implement exit and continue within the RobsterToHB16 compiler
by modifying compStm to (1) pass any additional parameters necessary to handle the new constructs
and (2) flesh out clauses for Exit and Cont. Your compiler should raise a compile time error (using
CompError) if exit or continue are ever encountered outside a while loop body.

(robster (n)
(decl i 1
(while (k= 1i n)
(decl j 1
(seq

(while (<= j i)
(seq*x (if (= (% j 4) 0) (exit))
Gf = (hj2 0
(seq (<= j (+ j 1)) (continue)))

(clear)
(println-int (+ (* 10 i) j))
(while (switch 16) (skip))
(while (! (switch 16)) (skip))
(<=3 G+ 310N

=i 1iDHYNN

Figure 2: An example with exit and continue within nested while loops

Problem 3 [15]: Desugaring
Many ROBSTER programs can be simplified by introducing some new syntactic sugar.

Sugar

Description

(Loop Shody)

Executes the body statement Syoqy in an infinite loop. Within the loop
body, exit exits the loop and continue starts the next iteration of the
loop.

(wait—until FE)

Waits for the expression E to change value from false to true. If E is
initially true, wait-until will not return until E first becomes false and
then true again. This is known as edge-triggered logic.

(++ D)

Increments the mutable integer variable I.

(+= 1 E)

Modifies the mutable integer variable I by adding to it the value of the
integer expression F.

(fOI‘ I Elo Ehi Sbody)

Executes the body statement Sp.q, for each of the values of the integer
index variable I between F;, and Fp;. The integer expressions F;, and
Ey; should be evaluated exactly once, before Spoqy is executed for the first
time. Within the Sp,qy of a for loop, exit exits the for loop and continue
starts the next iteration of the loop (in which case it is necessary to first
explicitly increment the index variable).

Fig. 2 presents some examples of ROBSTER programs from above that have been simplified by using

the new syntactic sugar.

In this problem, you are to extend the desugaring rules desugarRules of ROBSTER in the
module Robster to handle the five new syntactic sugar forms introduced above. You can test your
desugaring by executing RobsterTest.dtest RobsterTest.name, where name is the name of the

program string in RobsterTest.

(robster () {SciBorg ping-pong program}
(seqg*

(talk-to 3) {Motors O and 1}

(this-way) (on) {Go forward}

(loop {Infinite loop}

(seqg*

(wait-until (switch 7))
(that-way) {Go backward if front bumper pressed}
(wait-until (switch 8))
(this-way) {Go forward if back bumper pressed}
)DD))

(robster (lo hi)
(decl sum O
(for i 1o hi
(seqg*
(if (= (% i 42) 0) (exit)) {Stop at multiples of 42}
(if (= (% i 13) 0) {Exclude multiples of 13}
(seq (++ i) (continue)))

(+= sum 1)))

(print-result sum)))

(robster (n)
(for i 1 mn
(for j 1 i
(segx (if (= (%4 j 2) 0)
(seq (++ j) (continue)))
(Af (= (% j 4) 0) (exit))
(clear)
(println-int (+ (* 10 i) j))
(wait-until (switch 16))))))

Figure 3: ROBSTER programs using the new syntactic sugar.

Problem 4 [40]: Your Choice
In this part, you have a choice between two problems. You only need to do one of the two
problems, although you are welcome to do the other one for extra credit.

4a: Dynamic Typing of Compiled PosTFIix

In class on Wed. Nov. 12, we discussed how to modify the PostFixToHB16 compiler from PS4
so that the compiled code dynamically catches POSTFIX type errors when it is executed. The key
idea is to use the least significant bit of a 16-bit word as a “type tag’, where 0 is the tag for an
integer and 1 is the tag for a pointer. Because of the tag bit, only 15-bit signed integers can be
represented in this scheme.

The file “/ps5/PostFixToHB16Typed.ml initially contains Lyn’s solution to PS4 (the PosTFix
to HANDYBOARD compiler that does not perform dynamic type checking). Modify this file so that
it implements a POSTFIX to HANDYBOARD compiler that does perform dynamic type checking.
Follow these guidelines:

e The 6811 parser and assembler have been extended to handle a new alignment declaration
that you will need for this problem. In “raw” 6811 assembly the directive is written:

align r d
while in OCAML abstract instruction syntax the directive is written
Align (r, d)

In either case, the alignment directive means to insert zero or more nop instruction bytes
(opcode = 1) so that the address of the first byte after the alignment directive is at an
address a that gives a remainder r when divided by d.

For example, the following table shows the number of nop bytes inserted by alignment calls
at various addresses:

Address | align 0 2 | align 1 2 | align O 4 | align 1 4 | align 2 4 | align 3 4
$9000 0 1 0 1 2 3
$9001 1 0 3 0 1 2
$9002 0 1 2 3 0 1
$9003 1 0 1 2 3 0

e When the translated code encounters a dynamic type error, it should display an error message
on the LCD of the HANDYBOARD and then restart the program.

e Test your translator on a wide variety of POSTFIX programs to make sure it behaves ap-
propriately. You should check that it works in non-error cases as well as error cases. In
particular, test that the 15-bit signed arithmetic works as expected.

o Execute (#use "postfix-to-hbl6-typed.ml") to load all files required for this problem and
(#use "PostFixToHB16Typed.ml") to load only the translator file.

4b: A ROBSTER to PosTFIX translator.
In PS3, you implemented a CONDEX to POSTFIX translator. In this problem, you will implement
a ROBSTER to POSTFIX translator “from scratch” in the file RobsterToPostFix.ml. Executing (in
a POSTFIX interpreter) the POSTFIX program that results from translating a ROBSTER program
should have the same effect as executing the original robster program in a ROBSTER interpreter.
Follow these guidelines:

e The most interesting aspects of the translation are handling variables and loops. Think
carefully about how you will handle these before you begin your implementation. In particular,
you will need some sort of static environment that models the current offset of every temporary
value and variable on the POSTFIX stack.

e A ROBSTER program does not return any value but is executed for its effect. But a POSTFIX
program is required to end with an integer value at the top of the stack. A translated
ROBSTER program that executes without error should end with the integer 0 at the top of
the stack.

e Because of limitations in POSTFIX there are several ROBSTER operations that cannot be
faithfully implemented by the translator. You should handle these as described below:

— POSTFIX cannot handle any of the robotic primitives from Problem 1. Your compiler
should treat any robotic void ops as skips and should treat sensor as if it always returns
0 and switch as if it always returns false.

— You do not have to handle the exit and continue constructs from Problem 2. Treat
each of these as if it is a skip.

— As currently configured, POSTFIX cannot handle string-length or string-get. You
can treat string-length as if it always returns 0 and string-get as if it always returns

»a’ (ASCII 97).

— It is possible for POSTF1xX to handle to print-char, but you are not require to do so in
this problem. (You may do so for extra credit.)

e You may assume that the ROBSTER program being translated is “type-correct” —i.e., you do
not have to worry about any type errors in the ROBSTER program.

e As of this writing, there is no automatic way to compare the results printed by executing the
PosTFiX program that results from translating a given ROBSTER program with the results
printed by executing the original ROBSTER program.

e Execute (#use "robster-to-postfix.ml") to load all files required for this problem and
(#use "RobsterToPostFix.ml") to load only your translator file.

Problem Set Header Page
Please make this the first page of your hardcopy submission.

CS301 Problem Set 5
Due Wednesday, November 19

Names of Team Members:
Date & Time Submitted:

Collaborators (anyone you or your team collaborated with on the problem
set):

In the Time column, please estimate the time you or your team spent on the parts of this problem
set. Team members should be working closely together, so it will be assumed that the time reported
is the time for each team member. Please try to be as accurate as possible; this information will
help me design future problem sets. I will fill out the Score column when grading you problem set.

Part Time Score

General Reading

Problem 1 [25]

Problem 2 [20]

Problem 3 [15]

Problem 4 [40]

Total

10

