

Nucleotide vs. amino acid sequences for phylogenies

1) <u>Nucleotides</u>:

- Synonymous vs. nonsynonymous substitutions
- Transitions vs. transversions
- Coding vs. non-coding sequences
- Can analyze pseudogenes

2) <u>Amino acids</u>:

- Distances can be very large for nucleotides
- 20 characters, greater "phylogenetic signal"

# OTUs	Unrooted trees	Rooted trees
2	1	1
3	1	3
4	3	15
5	15	105
10	2,027,025	34,459,425
15	7.91 × 10 ¹²	2.13 × 10 ¹⁴
20	2.2 × 10 ²⁰	8.2 × 10 ²¹
50	3.0 × 10 ⁷⁴	2.8 × 10 ⁷⁶
n	(2n - 5)! / 2 ⁿ⁻² (n-3)!	(2n - 3)! / 2 ⁿ⁻² (n-2)!

Bootstrapping is used to evaluate the robustness of phylogenetic trees

- 1) Start with original dataset and original tree
- 2) Randomly re-sample with replacement to obtain alignment of equal size (pseudo-sample)
- 3) Build tree with re-sampled data, repeat 500-1000x
- 4) Determine frequency with which each clade in original tree is observed in pseudo-trees

Influenza virus genes					
Genome	Segment size				
<u>segment</u>	(bases)	<u>Gene(s)</u>	Gene function		
1 2 3 4	2341 2341 2233 1778	PB2 PB1 PB1-F2 PA HA	Transcriptase: cap binding Transcriptase: elongation; Induces apoptosis Transcriptase: protease activity Hemagglutinin: host cell recognition		
5	1565	NP	Nucleoprotein: RNA binding; transcriptase complex; vRNA transport		
7	1027	M1 M2	Matrix protein: major component of virion Integral membrane protein - ion channel		
8	890	N51 N52	Non-structural: RNA transport, splicing, translation. Anti-interferon. Non-structural: nucleus and cytoplasm, vRNA export (NEP)		

Reassortment can produce pandemic influenza viruses

- 1957 Asian flu: H2N2, 3 avian flu segments, 5 human flu segments
- 1968 Hong Kong flu: H3N2, 2 avian flu segments, 6 human flu segments
- Reassortment in pigs susceptible to avian, human, and swine flus

Avian flu H5N1

- Has jumped to humans (> 250 people infected)
- Very little immunity in humans: mortality rate ~60%
- Can have similar pathology to 1918 virus
- How close is avian flu to being able to efficiently infect humans and spread from human to human?