

Nucleotide vs. amino acid sequences for phylogenies

1) Nucleotides:

- Synonymous vs. nonsynonymous substitutions
- Transitions vs. transversions
- Coding vs. non-coding sequences
- Can analyze pseudogenes

2) Amino acids:

- Distances can be very large for nucleotides
- 20 characters, greater "phylogenetic signal"

Today:

A) Rooting phylogenetic trees
B) Number of phylogenetic trees
C) Tree building (character, distance)
D) Testing the robustness of the tree
E) Testing alternative tree topologies
F) Influenza

Inferring evolutionary relationships requires rooting the tree

To root a tree, imagine that the tree is made of string.

Grab the string at the root and tug on it until the ends of the string (the taxa) fall opposite the root:

There are two major ways to root trees:

By outgroup: pick outgroup that is not too tart, not too sweet

By midpoint or distance: on longest path; need to be sure evolutionary rates are same for all taxa

The number of possible trees grows quickly

\# OTUs	Unrooted trees	Rooted trees
2	1	1
3	1	3
4	3	15
5	15	105
10	$2,027,025$	$34,459,425$
15	7.91×10^{12}	2.13×10^{14}
20	2.2×10^{20}	8.2×10^{21}
50	3.0×10^{74}	2.8×10^{76}
n	$(2 n-5)!/ 2^{n-2}(n-3)!$	$(2 n-3)!/ 2^{n-2}(n-2)!$

There are $\sim 10^{79}$ protons in the universe

Computational methods for finding optimal trees

Exhaustive algorithms: Evaluates all possible trees, choosing the one with the best score.

Heuristic algorithms: Approximate methods that attempt to find the optimal tree for the method of choice, but cannot guarantee to do so.

How do we build a phylogenetic tree?

1) Distance-based methods:

- Transform the aligned sequences into pairwise distances
- Use the distance matrix during tree building (UPGMA, Neighbor joining, etc.)
- Decisions: how to deal with gaps? correction for multiple substitutions?

How do we build a phylogenetic tree?

2) Character-based methods:

- Examine aligned sequences, pick informative sites
- Build tree that requires smallest number of changes (Maximum parsimony)
- Or that has highest likelihood of producing data based on a sequence evolution model (Maximum likelihood)

Maximum parsimony methodology

" IT IS VAIN TO DO WITH MORE WHAT CAN BE DONE WITH FEWER"

OR
Principle of parsimony
OR
..smallest number of evolutionary changes...

The 'most-parsimonious' tree is the one that requires the fewest number of evolutionary events (e.g., nucleotide or amino acid substitutions) to explain the sequences observed in the taxa.

Maximum parsimony methodology

Step 1: Identify informative sites

Sites with at least two different characters at the site, each of which is represented in at least two of the sequences

	Site								
Seq.	1	2	3	4	5	6	7	8	9
1	A	A	G	A	G	T	T	C	A
2	A	G	C	C	G	T	T	C	T
3	A	G	A	T	A	T	C	C	A
4	A	G	A	G	A	T	C	C	T

Maximum parsimony methodology

Step 1: Identify informative sites

Sites with at least two different characters at the site, each of which is represented in at least two of the sequences

Site

Seq.	1	2	3	4	5	6	7	8	9
1	A	A	G	A	G	T	T	C	A
2	A	G	C	C	G	T	T	C	T
3	A	G	A	T	A	T	C	C	A
4	A	G	A	G	A	T	C	C	T
					\uparrow		\uparrow		\uparrow

Sites where all trees require the same number of changes are not informative

Tree I

Tree II
Tree III

Site

- = changes

Seq.	1	2	3	4	5	6	7	8	9
1	A	A	G	A	G	T	T	C	A
2	A	G	C	C	G	T	T	C	T
3	A	G	A	T	A	T	C	C	A
4	A	G	A	G	A	T	C	C	T

Maximum parsimony methodology

Step 2: Calculate minimum number of substitutions at each informative site

Step 3: Sum number of changes at each informative site for each possible tree

The tree(s) with the least number of total changes is/are the most parsimonious tree(s)

Maximum parsimony computations

Up to ~10 OTUs: can do exhaustive search

- Start with 3 taxa in a tree, add one taxon at a time
- Look at all possible trees, select best tree

10-20 OTUs: start being selective

- Determine a reasonably good threshold tree length
- Pursue only those trees shorter than a threshold
≥ 20 OTUs: heuristic search - educated guesses
- Draw initial tree with fast algorithm
- Search for shorter trees by examining only trees with similar topology; pruning and regrafting

Bootstrapping is used to evaluate the robustness of phylogenetic trees

1) Start with original dataset and original tree
2) Randomly re-sample with replacement to obtain alignment of equal size (pseudo-sample)
3) Build tree with re-sampled data, repeat 500-1000x
4) Determine frequency with which each clade in original tree is observed in pseudo-trees

Bootstrapping a phylogenetic tree

How are bootstrapping values interpreted?

Measures how strongly the "phylogenetic signal" is distributed through the multiple sequence alignment

Values $>70 \%$ are considered to support clade designations (estimated $p<0.05$)

Assumes samples are reasonably representative of larger population

Which of two "good" trees are better?

Different methods for distance, MP, and ML trees

Influenza virus

- ssRNA genome, ~13,588 bases
- Genome in 8 segments, 10-11 genes

- Subtype nomenclature based on HA and NA genes
- 16 Hemagglutinins, 9 Neuraminidases
- Human: H:1,2,3; N: 1,2; Birds: all combinations

Influenza virus can change rapidly

- High mutation rate (antigenic drift)
- Reassortment (antigenic shift)

Can produce hybrid viruses

Reassortment can produce pandemic influenza viruses

- 1957 Asian flu: H2N2, 3 avian flu segments, 5 human flu segments
- 1968 Hong Kong flu: H3N2, 2 avian flu segments, 6 human flu segments
- Reassortment in pigs - susceptible to avian, human, and swine flus

1918 influenza pandemic

- Highly virulent flu virus ("Spanish flu")
- Estimated deaths: 50-100 million worldwide (of 1.8 billion)
- Many people died within a few days from acute pneumonia
- Many fatalities were young and healthy people
- Lowered average U.S. life expectancy by 10 years

1918 influenza questions

-Where did the 1918 flu come from?

- Why was the 1918 flu so pathogenic?
- Is it possible for a 1918-like pandemic to happen again?

Avian flu H5N1

- Has jumped to humans (> 250 people infected)
- Very little immunity in humans: mortality rate ~60\%
- Can have similar pathology to 1918 virus
- How close is avian flu to being able to efficiently infect humans and spread from human to human?

