k Nearest Neighbors and Feature Scaling

Nearest Neighbors Algorithm
- Store all the *training* data as feature vectors
- Prediction for new, *test* data point: return the label of the closest *training* point

(you are the company you keep…)

What is the predicted color for a new point (-2, -2)? Or for (2, 2)?

Effect of increasing k: smoother decision boundaries

k Nearest Neighbors Algorithm
- Choose some integer value of k (say, 3)
- Compute the k closest *training* points to the *test* data point
- Return the majority label

What is the predicted color for a new point (-1.1, 1.7)?
Three Classes

Choosing k

- k is a free “hyperparameter” of the algorithm. How do we choose it?
- One option: try different values of k when evaluating on test data
- Rather than split data into two parts, training and test, we split data into three parts, training and validation (aka development) and test.
 - Use the validation data as “pseudo-test data” to tune (choose best) k
 - Do final evaluation on the test data only once

Distance Measure in 2D

\[
\text{distance}(\text{Point 1}, \text{Point 2}) = \sqrt{(3.8 - 2.6)^2 + (5.4 - 2.6)^2}
\]

Distance Measure in 2D

Point 1 3.8 5.4
Point 2 2.6 2.6
Point 3 3.1 1.5
Point 4 2.1 0.5
Distance Measure in 2D - L² Norm

Distance Measure in 2D - L¹ Norm
Distance Measure in 2D - L^∞ Norm

\[
\text{distance}(\text{Point } a, \text{Point } b) = \sqrt{|a_1 - b_1|^\infty + |a_2 - b_2|^\infty} = \max\{|a_1 - b_1|, |a_2 - b_2|\}
\]

Point 1: 3.8 5.4
Point 2: 2.6 2.6
Point 3: 3.1 1.5
Point 4: 2.1 0.5

Distance Measure in 2D

Point 1: 3.8 5.4
Point 2: 2.6 2.6
Point 3: 3.1 1.5
Point 4: 2.1 0.5

Distance Measure in 3D

Point 1: 3.8 5.4 4.7
Point 2: 2.6 2.6 2.6
Point 3: 3.1 1.5 2.2
Point 4: 2.1 0.5 1.2

Distance Measure in 3D

\[
\text{distance}(\text{Point 1, Point 2}) = \sqrt{(3.8 - 2.6)^2 + (5.4 - 2.6)^2 + (4.7 - 2.6)^2}
\]
Distance Measure in 3D

Point 1 3.8 5.4 4.7
Point 2 2.6 2.6 2.6
Point 3 3.1 1.5 2.2
Point 4 2.1 0.5 1.2

\[\text{distance}(\text{Point } a, \text{Point } b) = \sqrt{|a_1 - b_1|^2 + |a_2 - b_2|^2 + |a_3 - b_3|^2} \]

Distance Measure in High Dimensions

Point 1 3.8 5.4 4.7 5.0 \ldots 4.2
Point 2 2.6 2.6 2.6 2.6 \ldots 2.6
Point 3 3.1 1.5 2.2 1.9 \ldots 2.7
Point 4 2.1 0.5 1.2 0.9 \ldots 1.7

\[\text{distance}(\text{Point } a, \text{Point } b) = \sqrt{\sum_{i=1}^{d} |a_i - b_i|^2} \]

kNN Complexity

- Given \(n \) training examples and \(d \) features
- **Training** step
 - Time: approximately zero; just store the data points
 - Space: size of training data (\(n \times d \))
- **Testing** step (for each test example)
 - Time?

Feature Scaling

<table>
<thead>
<tr>
<th>GPA</th>
<th>Standardized Test Score</th>
<th>Accept?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1110</td>
<td>0</td>
</tr>
<tr>
<td>3.8</td>
<td>1500</td>
<td>1</td>
</tr>
<tr>
<td>3.9</td>
<td>1300</td>
<td>?</td>
</tr>
</tbody>
</table>
Feature Scaling

- Compute the mean (i.e., average) for each of the features in the training data and subtract this mean from each feature value:

 For each of the $1 \leq i \leq n$ training examples and $1 \leq j \leq d$ features, we subtract the mean: $x_{ij} = x_{ij} - \mu_j$

 where the mean of the j^{th} feature is $\mu_j = \frac{1}{n} \sum_{i=1}^{n} x_{ij}$

- Data will then be centered around zero

$$
\text{distance}(\text{Student 1}, \text{Student 3}) = \sqrt{(3.9 - 3.9)^2 + (1110 - 1300)^2} \\
= \sqrt{0.0 + 36100} \\
= \sqrt{36100} \\
= 190
$$

$$
\text{distance}(\text{Student 2}, \text{Student 3}) = \sqrt{(3.8 - 3.9)^2 + (1500 - 1300)^2} \\
= \sqrt{0.01 + 40000} \\
= \sqrt{40000.01}
$$
Feature Scaling

- Compute the standard deviation for each of the features in the training data and divide each feature value by this standard deviation.

For each of the $1 \leq i \leq n$ training examples and $1 \leq j \leq d$ features, we divide by the standard deviation:

$$x_{ij} = x_{ij} / \sigma_j$$

where the standard deviation of the j^{th} feature is

$$\sigma_j = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \mu_j)^2}$$

- Data will then have comparable scale.

Feature Scaling - Test Data

- When scaling the training data, we store the mean and standard deviation values that we compute for each feature as part of the scaling process.

- When given a testing example, we need to make sure that it is on a comparable scale as the training data. Thus, we scale it using the stored mean and standard deviation values.

For the i^{th} testing example, we scale each of its $1 \leq j \leq d$ features by subtracting the j^{th} mean (μ_j) and dividing by the j^{th} standard deviation (σ_j):

$$x_{ij} = (x_{ij} - \mu_j) / \sigma_j$$

Pros and Cons of kNN

Pros

- Simple and intuitive
- Can be used with multiple classes (not just 2)
- Data does not have to be linearly separable

Cons

- Need to store large full training data
- Test time is SLOOOWW
 ○ Prefer to pay for expensive training in exchange for fast prediction
Looking ahead

- \(k\)NN is an instance-based classifier: must carry around training data (waste of space)
- Training easy
- Testing hard

Future methods will be

- Parametric classifiers: compute a small "model" and then throw away training data
- Training hard
- Testing easy

Looking ahead: linear classifiers

- **Training:** find a dividing "hyperplane" between two classes
- **Testing:** check which side of hyperplane the new point falls in

Overview

- **ML Algorithms**
 - **Supervised Learning**
 - Non-Parametric
 - Decision Trees
 - Parametric
 - \(k\)NN
 - Support Vector Machines
 - Collaborative Filtering
 - **Linear Regression Models**
 - **Linear Classifiers**
 - Perceptron
 - **Non-Linear Classifiers**
 - Neural Networks
 - Logistic Regression
 - **Hidden Markov Models**
 - **Hierarchical Clustering**
 - K-Means
 - Gaussian Mixture Models
 - Dimensionality Reduction
 - **Unsupervised Learning**