Recommender Systems
How might my ratings change my recommendations?

Goals of Recommender Systems

- Show content that we’re interested in
- Suggest new content that would interest us
- Suggest new content that is generally popular
- Adjust recommendations based on our feedback

$1M winning algorithm not actually used by Netflix

Researchers were able to de-anonymize data by comparing with IMDB ratings, resulting in a lawsuit
Recommender Systems

- What makes two (Amazon) users similar?
 - Purchased the same set of items
 - Liked and disliked the same set of items

- What makes two items similar?
 - The same set of users purchased/liked them
 - Their titles, description, prices, other metadata

Collaborative Filtering

Create a user-item matrix

<table>
<thead>
<tr>
<th></th>
<th>Sohie</th>
<th>Brian</th>
<th>Cibele</th>
<th>Shikha</th>
<th>Ada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Similarity: Jaccard

- Measure similarity between a pair of user vectors (or a pair of item vectors)

\[U_A = [1, 0, 1, 0] \]
\[U_B = [0, 0, 1, 0] \]

\[\text{Jaccard}(U_A, U_B) = \frac{| U_A \cap U_B |}{| U_A \cup U_B |} \]

Problem: does not work for non-binary vectors

When is result 0? When is it 1?

Similarity: Cosine

- Measure similarity between a pair of user vectors (or a pair of item vectors)

\[U_A = [0, 5, 2, 0] \]
\[U_B = [1, 0, 4, 2] \]

\[\text{CosineSim}(U_A, U_B) = \frac{U_A \cdot U_B}{||U_A|| \cdot ||U_B||} \]

When is result 0? When is it 1?

User-Based Collaborative Filtering

Task: predict rating on new user-item entry in matrix: \(U_A, I_p \)

- Among users that have rated \(I_p \), select a set \(S_K \) of the K most similar users to \(U_A \)
- Predicted rating for \(U_A, I_p \) is average rating of \(I_p \) from users in \(S_K \):

\[R(U_A, I_p) = \frac{\sum_{U_i \in S_K} R(U_i, I_p)}{K} \]
Item-Based Collaborative Filtering

Task: predict rating on new user-item entry in matrix: U_A, I_P

- Among *items* that have been rated by U_A, select a set S_k of the K most similar *items* to I_P.
- Predicted rating for U_A, I_P is average rating of U_A from *items* in S_k:

$$R(U_A, I_P) = \frac{\sum_{I_q \in S_k} R(U_A, I_q)}{K}$$

Weighted Average

Compute final score in some class:

<table>
<thead>
<tr>
<th>Score</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class participation</td>
<td>60%</td>
</tr>
<tr>
<td>Homework</td>
<td>95%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>50%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>87%</td>
</tr>
</tbody>
</table>

Weighted Mean is 80%:

$$\text{Weighted Mean} = \frac{\sum \text{Weight} \times \text{Score}}{\sum \text{Weight}} = \frac{60 \times 0.60 + 95 \times 0.95 + 50 \times 0.50 + 150 \times 0.87}{50 + 200 + 100 + 150}$$

Mean is 73%:

Problem with Collaborative Filtering?

- If user-item matrix is too sparse, may not be useful.
- "Cold-start problem": how to handle new users and items?
- Won’t encourage diverse results (echo chamber effect).
Content-Based Recommendations: Approach 1

- Define similarity between users (or similarity between items) in terms of content features, not rating patterns
 - Examples of item features: restaurant cuisine type, director or actors in movie, product details
 - Examples of user features: demographic information
- Apply same methods as for collaborative filtering

Content-Based Recommendations: Approach 2

- Featurize users and items under the same set of features
 - Features: words
 - user feature values = word counts in reviews
 - item feature values = word counts in descriptions
 - Features: demographics
 - user feature values = demographic info
 - item feature values = target demographics
- Compute similarity between a given user and item

Featurizing Text

- Bag of words: tokenizing, counting, tf-idf weighting

<table>
<thead>
<tr>
<th>Fast service but bland food.</th>
<th>bland</th>
<th>but</th>
<th>fast</th>
<th>food</th>
<th>good</th>
<th>no parking</th>
<th>service</th>
<th>but bland</th>
<th>parking no good</th>
<th>good fast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good fast food.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>No service, no parking, no good.</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bland</th>
<th>but</th>
<th>fast</th>
<th>food</th>
<th>good</th>
<th>no parking</th>
<th>service</th>
<th>but bland</th>
<th>parking no good</th>
<th>good fast</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- N-Grams

Evaluation

- **Task Type A**: Given test set of (user, item) pairs, predict ratings
 - Raw accuracy, e.g., percentage of ratings predicted exactly
 - Root mean squared error (RMSE)
 \[
 \text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}
 \]
- **Task Type B**: Given test set of users, predict set of items to recommend
 - Precision, Recall, F1 Score

| TP: Recommended items user actually buys |
| FP: Recommended items user does not buy |
| TN: Items not recommended and user does not buy |
| FN: Items not recommended and user buys |
Vectorization (Array Programming)

- Many scientific and numerical computing libraries, such as NumPy in Python, provide vectorized operations, i.e., operations that can be applied to an entire array (matrix):
 - `np.random.randint(...)`
 - `np.median(a)`
 - `a[a>10]`
 - `a**2`
 - `np.sum(a)`
 - `np.mean(a)`
 - `np.dot(a,b)`
 - `np.ones(...)`

- Whenever possible, it is usually a good idea to use vectorization rather than looping through an array and applying an operation to each element.