C++ Programming Style*

Scott D. Anderson

©2003

1 Principles

Programming is part engineering and part communication.

Programming is engineering, because the result (the program) is an artifact that works—it
does something that is useful in its own right. Getting a program to work is hard, particularly
when you're a beginner, and you should feel proud of yourself when you get it working. That’s
also why the majority of your grade on a programming assignment is based on just whether the
program works at all. In my class, a working program will receive a minimum of about a 70—a
passing score for a working program. The rest of the points come from the efficiency of the program
(another aspect of the engineering task) and its style, which is important because programming is
communication.

Programming is communication, because programs are not just read by the compiler, but are
read by other programmers. In school, they are read by your professor or your teaching assistant,
and in industry, they are read by co-workers, review committees, bosses and people who replace
you when you leave. In fact, the person reading the code may well be yourself, six months later,
when you have to go back and fix a bug or add a feature. All of those people need to be able to
understand the program without having to ask you. In school, it may seem silly to explain to the
professor what the program does, but it’s no more silly than explaining the War of 1812 to your
history professor. The educational goals are to improve your communication skills and to ensure
that you understand the material. The task for you is to pretend that the person reading your
paper or program doesn’t know anything about what it’s supposed to do.

There is, of course, a balance to be struck, between explaining too much and explaining too little.
In your history paper on the War of 1812, you could probably omit that Britain is a small country
northwest of France, and the U.S. is a large country in North America. Similarly, in explaining
a program, you can assume that the reader knows the programming language. Therefore, for
example, you must never do the following:

it+; // increase i by one

You should assume your readers know enough C++4 so that they know what ++ does, so don’t
explain the obvious. However, your readers may not know, depending on what i is, why you are
increasing i. Keep purposes in mind when explaining your code.

Rule 1 Don’t explain the obvious.

*Parts of this essay have benefited from the contributions of Mark Pauley at the University of Nebraska at Omaha,
Mark_Pauley/IST/UNO/UNEBRQunomail .unomaha.edu

What is style? In literature, style is what distinguishes one author from another, such as
Hemmingway from Joyce. If those two authors described the same event, the two stories would be
remarkably different. Maybe we would enjoy reading both, find both equally understandable and
equally valuable as a contribution to literature; maybe not. In programming, there are still stylistic
differences among authors, but the differences are smaller, and the standards are more exacting,
because of the engineering task (two programs to do the same thing will have to be pretty similar)
and because of the overwhelming emphasis on clarity. Therefore, programming style is not an
opportunity for you to be creative; indeed, many companies have a policy on proper programming
style that is rigidly enforced.

Programming style is a time for you to step back from your program, take a deep breath, and
try to write it and re-write it until it is as clear as possible. This document will review a number
of issues and aspects of programming style and give guidelines and suggestions.

2 Names

In order to tell a story, you have to have names: Jack and Jill, the bartender and the patron, or
whatever. If you're going to describe how a program works, you have to name the parts, both the
data and the functions. Names are a critical foundation upon which the story of your program is
built.

Rule 2 All names should be descriptive and accurate.

Here are some examples of how to name things.

e If a function finds the biggest element in a linked list, don’t call it sort. It should be called
something like findMax() or getBiggest ().! You could even call it largest, omitting the
“find” part. That would read nicely in calls like:

swap (current ,biggest (1list));
The preceding code obviously swaps the current list element with the biggest in the list.

e There are circumstances under which you might name a variable prev that will point to
elements of linked list. You would do this when there is another variable called current or
elt or something, and prev is the previous value of that other variable or is the preceding
list element. But if that’s not what the variable is, you have just misled your reader. This is
terrible. T have seen it happen.

e Similarly, I have seen code to find the smallest element in a list in which the name for the
current element of the list was biggest. It wasn’t the biggest anything. Again, I was misled.

e By “descriptive,” I mean that the name of the variable should talk about the purpose or use
of the variable. For example, you would never name a variable anInt; surely there is some
better description available.

e Calling a variable count is little improvement. What is it counting? Why is it counting?
If the explanation is too long for a variable name, it can be put in the documentation, but
struggle to improve the variable name. Names like bucketCount or loopCount may need
further explanation, but once explained, they are easy to understand and remember.

In text, it’s common to denote that something is a function or method by putting empty parentheses after its
name. When possible, a fixed-width font is used.

e There are, of course, variables that are truly generic. One example is indices used in for
loops or for accessing arrays. We are all familiar with code like the following:

for(int i=0 ; i<arraySize; i++)
array[i] = 0;

There is no need to get clever trying to name i, for two reasons. First, it is simple and needs
no explanation. Secondly, we can see every use of the variable right before our eyes; mnemonic
names are most important when a variable will be seen a long way from its initialization and
documentation. For such variables, a generic name like i or x is acceptable. Note that this
is not an exception to the rule: a generic name is, in fact, accurate and descriptive.

e Sometimes a more generic name is better for functions and their arguments as well. Imagine
a function that swaps two pointers. If we are using it in a program to sort students, we
might call it swapSmallest, since it will be used to swap the smallest student with one at the
beginning of the list. However, this function could also be used in shuffles, permutations, and
other unanticipated uses. Therefore, the second declaration is better than the first, because
the second is too specific:

void swapSmallest(studenPtr & curr, studentPtr & small)

void swap(studentPtr & x, studentPtr & y)

e Data members need to be appropriately named as well. The only difference between them
and variables is that data members will be accessed via a variable, so the name of the data
member is always in a context. For example, the following is probably too cumbersome:

class Student {

public:
char studentName[20]; // The name of the student
}
Student bestStudent; // The student with best GPA
cout << bestStudent.studentName; // This seems too long and unwieldy

Everything seems okay until we get to that last line. Then we realize that, since the
studentNname data member is found in an object of type Student, it’s redundant to include
the “student” in the name. We might go with best.studentName but bestStudent .name
seems better, and even best.name is fine. Descriptive names needn’t be incredibly long.

Rule 3 Be consistent with capitalization and punctuation of names. Decide on a scheme and stick
with it.

Because C and C++ are case-sensitive, you can distinguish different kinds of things with capital-
ization, but be careful about this, because humans are not always case-sensitive. How many times
have you had to ask whether it’s “String.h” or “string.h”? People, particularly computer-people,
can train themselves to be case-sensitive, but it’s always easy to overlook.

Here are some rules that are in common use or that are reasonable.

e Constants are in all capital letters. For example, NULL is in all caps. Very often, TRUE and
FALSE are done that way; C++ seems to be changing to lower case for these. Code that is

substantially uppercase is ugly, so using all caps for variables that occur only every so often
is best. Examples that might occur in your programs are ARRAYMAX or MAX_STUDENTS.

e User-defined types, which includes names of structures and classes, start with a capital letter.
Thus, you might name your class Student or Node.

e Variables, functions, and data members start with a lower-case letters. Thus, you might have
variables named best or head or whatever.

Creating new types—classes and structures—is more rare and important than naming a variable
or function. Therefore, it’s reasonable to signal this by a capital letter. Constants are usually even
more rare, so the uppercase names will be few. At least, this is a sensible view, even if there are
exceptions.

You can use other schemes if you prefer. For example, Foundations of Computer Science, by
Aho and Ullman, typically uses uppercase for new types, so they would write LIST or NODE as the
type for such data structures. This is acceptable as well. However, do not forget to be consistent.
Don’t name one variable CURR and the next prev because they will look like completely different
kinds of things, and the reader will be confused and then annoyed.

Note that a good name often has two or three words in it. The issue of how to separate them
always arises. For example, a variable representing the smallest list element should not be named
smallestlistelement. Instead, it could be named smallest_list_element, separating the word
by underscores, or smallestListElement, indicating word separation by capital letters. Both ways
are commonly used, so use whichever you prefer. I think underscores are easier to read, but either
is acceptable. As always, be consistent.

The Java

3 Structure/Modularity

If we think of programming as writing, the best analogy to a paragraph is a function. In good
writing, a paragraph should be clear, focused and propel the argument forward. Similarly, in
programming, a function should do one thing and only one thing. A function that reads in a list
and sorts it does too much: it should be broken up into two functions, one that does the reading
and the other that does the sorting. Later, when we discuss documentation, you'll learn that each
function should be preceded by a paragraph describing its use and purpose. If you ever feel tempted
to use two or more paragraphs in that description, the function is definitely too long.

Rule 4 Functions should do just one thing.

This rule can be confusing: what counts as “one thing?” If a function finds the smallest element
in a list is that one thing? If it finds the smallest element and swaps it with the first element, is
that one thing? If it repeatedly swaps the next element with the smallest element in the rest of the
list, is that one thing? We call the last algorithm “selection sort,” so it seems like one thing.

In fact, any of the preceding is acceptable modularity, as long as the function is properly named.
Just as some paragraphs are short and others long, some functions are short and do very little,
while others are longer and accomplish a lot. You would prefer the smaller functions if they could
be called independently, thereby providing a general service, like our swap function above. If the
smaller parts are useless and the single function doesn’t become excessively long, you would prefer
the larger function.

What is the proper size of a function? Is there a minimum or maximum number of lines in a
function? No, no firm limits can be set, but I can give general guidelines. The most important
is determined by the size of the screen: it’s annoying to have to scroll back and forth to read a
function; it’s nice to be able to put all the lines of a function on the screen at once. 1 would use that
limit for any programmer; beginners, however, should aim for shorter functions. Just as beginning
writers use shorter sentences with simpler structure, beginning programmers write smaller, shorter
programs with smaller, shorter functions. I would advise sophomores to avoid writing functions
that are longer than two dozen lines. Juniors and seniors can go longer, particularly if the function
is conceptually simple.

Please take the guideline in the previous paragraph with a pinch of salt: some short functions
are very conceptually complex, while some long functions are conceptually simple:

// Like strncmp, except it ignores case in the comparison.
int strncmp_ic(char *s, char *t, int n)
{

int diff;

while(0 == (diff=toupper (*s++)-toupper (¥t++)) & (n--)) ;
return(diff);
}

void print_info(char *name, char *address, char #*phone)
{
cout << endl
<< ‘‘pname = ‘¢ << name << endl
<< ‘‘address = ‘¢ << address << endl
<< ‘‘phone = ‘¢ << phone << endl;

In the second code segment, I could go on for two dozen more lines of formatting and output, and
never run the slightest risk of confusing anyone. The code on the top, however, is only three lines
long and shows C at its nightmarish zenith of expressive power. I wouldn’t wish five consecutive
lines of that kind of stuff on anyone. All lines are not created equal.

When writing a function, we sometimes see that it has conceptually distinct phases or parts.
When that happens, it is acceptable, even helpful, to put a blank line between these phases. Even
better is a blank line followed by a documentation line that explains what is in store in the next
phase. This helps the reader see the sub-structure of the function. However, note that one blank
line is sufficient. There is never any reason for two consecutive blank lines within a function, and
rarely even in a file. Remember that is is useful to be able to see lots of the code on the screen, so
keep it relatively compact.

4 Indentation and Braces

If functions are the paragraphs of the program, the statements are the sentences of the program,
and they need to be properly punctuated. In fact, the task is even more demanding than mere
punctuation (semi-colons after each statement, for example), because of the way that people read
programs. The reader skips from place to place, jumping up to find variable declarations, jumping
forward from a loop to the statement following it, and so forth. To make this easy, we must

make the syntactic structure of the program visually evident. The compiler can count braces and
semi-colons, but the reader’s eye is best guided by indentation. In short:

Rule 5 Indentation is important. Code must be properly indented to show the syntactic structure
of the program.

The syntactic structure of a program is a tree: statements have parts, and those parts can be
statements in their own right, just as English sentences can contain multiple embedded clauses.
Here’s an example from psycholinguistics:

The rat the cat the dog chased bit died.

Sounds like gibberish, doesn’t it? Even adding the restrictive relative pronoun doesn’t help much:
The rat that the cat that the dog chased bit died.

What if I introduce some indentation:

The rat
that the cat
that the dog chased
bit
died.

It’s still hard to understand, but we can see from the indentation that “died” belongs with “the
rat” and it was the cat that bit the rat, and the dog that chased the cat.

Fortunately, English is rarely so heavily embedded as that toy sentence. Unfortunately, pro-
grams usually are. We think nothing of code like the following:

for(int i=0; i<n-1; i++) {

small=i;
for(int j=i; j<m; j++) {
if(A[jI1<A[small]) // line 1
small=j; // line 2
}
int temp=A[i]; // line 3

A[il=A[smalll;
Alsmall]l=temp;
}

The indentation is crucial to showing that line 2 is part of (contained in) the statement starting on
line 1. Similarly, the indentation is crucial to showing that line 3 is not contained in line 1, but is
at the same level—both are contained in the outer for loop.

Would you rather read the following code?

for(int i=0; i<n-1; i++) {
small=ji;

for(int j=i; j<n; j++) {
if (A[jl<A[small])

small=j;

}

int temp=A[i];
Ali]l=A[small];
A[small]l=temp;
}

The thought is too horrible to contemplate.

Rule 6 A statement that belongs to (is part of) another statement should be indented relative to
the containing statement. Statements that are at the same level in the syntax tree should be indented
the same amount.

Most students know that they should indent, but they forget or they find it time-consuming.
Here are a few hints:

e If you're a “vi” person, use tabs to move over. A couple of tabs are less tedious to type than
the equivalent number of spaces. The only drawback is that each tab is often equivalent to
eight spaces, which can mean that you quickly find your code starting halfway across the
page. However, you can set tab stops to be any size in ”vi”; check the man pages to find out
how. There is also a pretty-print function in ”vi”.

e If you're an Emacs person, use the tab key once, and Emacs will automatically indent your
code by the correct amount. An important benefit of this is that if Emacs indents your code
differently from the way you think it should, it’s likely that your code isn’t quite right. For
example, suppose I forget the opening brace in the inner for loop, above:

for(int i=0; i<n-1; i++) { // line 1
small=i;
for(int j=i; j<m; j++) // line 2
if (A[jI1<A[small])
small=j;
} // Emacs puts the brace here, closing line 1, not line 2.

We expected Emacs to put the brace under the “f” in the inner for, but it put it under the
“f” in the outer for, because we forgot the opening brace for the inner for. Thus, Emacs
gives us immediate feedback on syntax errors.

Either of these indentation schemes will result in two other important properties of good indenta-
tion: it’s visible (indenting only 1-2 characters is hard to notice; 3—4 is better) and it’s consistent
(if you sometimes indent 4 spaces and sometimes 8, I can’t tell what level some statement is at.
Indentation is defined by syntactic structure, and syntactic structure is essentially defined by
braces,? because braces enclose a sequence of statements where normally only one can occur. Thus,
we are led to a discussion of brace placement, over which blood can easily be shed.
One standard method is as follows:

for(int i=0; i<n; i++)
{

A[i]=0;
}

*For reasons I don’t understand, many people call these characters {} “curly braces” and these [1 “square brack-
ets.” Since those are the only kind of braces I know, I just call them braces, and similarly I call the other things
brackets. There is no reason I can think of for the extra adjectives.

Emacs does this automatically using the tab key, so this way is easy to follow.
Others like to do the following, presumably because the brace is contained in the for statement,
as well as containing the assignment statement.

for(int i=0; i<n; i++)
{
A[i]=0;
}

You can do whichever you like, as long as you’re consistent. (It’s possible to customize Emacs to
do this for you.)
Another way of doing the braces is to begin at the end of the previous line:

for(int i=0; i<m; i++) {
A[i]=0;
}

This produces a more compact style of code, which I happen to favor, as you’ve seen in previous
examples. However, warning, I am in the minority on this. Most C and C++ programmers put
braces on lines by themselves, and you should probably adopt that style. When in Rome, do as
the Romans.

Another issue is whether to enclose single statements in braces. For example, the code above
could have been written as follows:

for(int i=0; i<m; i++)
A[i]=0;

This eliminates the brace issue completely, and produces nice, compact code. The drawback,
however, is a serious one. Suppose you decide that, just before the assignment statement, you’d
like to print out the array element. So, you go add a statement:

for(int i=0; i<n; i++)
cout << A[i];
A[i]=0;

Now you’re in big trouble, because the assignment statement is no longer in the loop! In fact, you
will be lucky in this case, because the compiler will probably complain that:

foo.cc:8: warning: name lookup of ‘i’ changed for new ANSI ‘for’ scoping
foo.cc:6: warning: using obsolete binding at ‘i’

After thinking about that for a long while, you’ll realize that, since the assignment statement is
outside the loop, the i variable no longer exists.

You could also be saved if you have Emacs re-indent your code; you’d notice that the indentation
became:

for(int i=0; i<n; i++)

cout << A[i];
A[i]=0;

and all would be clear.

However, many programmers prefer to avoid any risk of that occurring, and so they always use
braces, whether for single statements or multiple statements. Either is acceptable.

Finally, there are annoying details, such as whether keywords can start after braces and such.
That comes up with the little-used do...while construct. Choose one of the following, depending
on what you like, and use it consistently:

do { do {

cin >> response; cin >> response;
} } while (respomse != ’N’);
while (respomse != ’N’);

Personally, I prefer the one on the left, with the while keyword starting at the correct indentation
level (and being colored correctly by Emacs), but either is acceptable.

While there is latitude in using braces, some things are simply not done. For example, an open
brace is always the last thing on a line. No one would do the following;:

for(int i=0; i<m; i++)
{ A[i] = 0;
B[i] = 1; }

That goes double for statements on a single line. I might do the following if I was putting in
debugging code, but that’s only because I would delete such code before anyone else saw it:

for(int i=0; i<n; i++) { cout << A[i]; A[i] = 0; }

However, that doesn’t mean that proper code always starts a new line. Compact code is nice, and
so single-statement blocks can be put on the same line as their containing statement:

for(int i=0; i<n; i++) A[i] = 0;
Contrast this with another acceptable style, which takes four lines instead of one:

for(int i=0; i<n; i++)
{

A[i]l = 0;
}

We’ve already discussed the advantages of the latter, sparse style of coding, namely that it’s easy
to insert additional lines of code.

When functions, loops, and if statements get long, as can easily happen, it can become hard to
visually match up the closing brace with the opening brace and, more importantly, the containing
statement. If that is likely to happen, it is thoughtful to help the reader out, by saying what the
brace is closing.

while (true)

Many lines of code

// end of while loop

We would probably not do this if the loop were short, say only 5-6 lines of code, because it clutters
up the code and makes it harder to read. On the other hand, if the code in the loop is very long,
we would probably try to introduce functions to make it more clear and compact. If that’s not
possible, then this marker is very important, despite the risk of visual clutter. After all, our goal
in every case is to make the structure of the program easy to see.

5 Documentation

If you obey all the rules above, your program will have come a long way towards being clear and
understandable. Nevertheless, many aspects of a program don’t come out clearly in the code, and
so we must document our code. What the documentation usually describes is the purpose, role,
structure or technique of the code. This is because, often, the reader misses the forest for the trees:
the code has all the details but none of the outline. Like an pointillist painting, we must step back
from the code in order to see it clearly.

Rule 7 Document the program as a whole. What does it do, and what are its inputs and outputs.
Say who wrote it, and when.

At the top of your program file, you should have a longish comment that explains what the
program does. This needn’t be long and elaborate, but it should get the reader started. Think of
it as a title and abstract for the paper. For example:

/* This program reads in an array of integers, with the number of
integers specified by the user, up to a maximum of 100. It then
sorts those numbers and prints them in order, one per line.

Written by Scott D. Anderson
October 23, 1997
*/

That would be a bare minimum for this first chunk of documentation. Additional documentation
would describe the structure of the program, in terms of what data are defined, what functions are
called, and so forth.

Notice, by the way, that I didn’t have to start every line with the double-slash comment char-
acters, //, because I used C comment characters, which comment out everything from /* to */.
These are very nice for long comments, especially paragraph comments where you might want to
fill the paragraph when you're done (M-q in Emacs).

Rule 8 Document functions. Fach function should be preceded by a brief paragraph explaining
what it does, how it works (if necessary) and the meaning of its arguments and return values.

Each function is, essentially, a small program, so just as you’d document the inputs, outputs
and purpose of a program, you should document each function. If that paragraph starts getting

long and cumbersome, the function is probably doing too much; consider breaking it into pieces.

Rule 9 Document variables and data members. Ezxplain the purpose and use of the data and any
non-obvious aspects of its implementation.

10

We have seen this issue before, when we discussed how to name a variable. Often, the name is
not sufficient to explain the variable, in which case the documentation helps the reader. For now,
you should probably document all but the generic variables (like i or temp). For example, here are
some class definitions:

class Student {

public:
char name [MaxName+1]; // The student’s name
int number; // The student number, used for sorting
float gpa; // The student’s grade point average
};
class Link {
public:
Student *elt; // A pointer, to make swapping efficient
Link *next; // Pointer to next list element, or null.
};

You could argue that none of this documentation is particularly necessary, but it can be helpful,
particularly for names that are abbreviated, such as “gpa” or possibly ambiguous, such as “number.”

Notice, by the way, that the documentation is nicely lined up and separate from the code,
making the code easy to read. This formatting is easy to do and worthwhile. In ”vi,” you’d have
to tab over the correct number of times, and in Emacs, the command M-; will move you to the
correct column and insert the comment symbols.

Having documented the program, each function, and all the variables and data members, you
might think we’re done. Not quite. The documentation we’ve discussed so far concentrates on the
high-level view: the purpose and plan of the code. Sometimes, the implementation is a little tricky,
and so we document those tricky parts of the code, explaining what’s going on.

Rule 10 Document any code that is not obvious.

Trickiness, of course, is a matter of judgment. What is complex to a beginner is obvious to an
experienced programmer. For example, it wasn’t that long ago that you appreciated the following
comment:

cur = cur->next; // Go to next list element

Now, that code is starting to be idiomatic to you—you see it as a single idea, like i++. Indeed, such
code is sometimes called programming idioms or clichés. Soon, you'll be omitting documentation
for code like that. But there will still be many things to document:

(*tail) = new Node; // Add new node to end of list.
tail = &((*tail)->next); // update tail ptr to addr of next in last elt

For now, you should document any code that isn’t obvious to you. If you're not sure, err on the
side of documenting, because it’s good practice, and because something that is obvious while you’re
writing the code may not be so obvious to a reader, even to yourself after a week’s time.

Rule 11 Use proper spelling and grammar, except when brevity is more important.

11

Programming style is a way of showing respect and concern for your reader: you’re going to go
to the extra effort to make your code clear and understandable. Not bothering to write proper
English undercuts that message. It makes your reader work harder to understand you. It’s more
likely to be ambiguous or misleading. It makes you look uneducated, which can make your reader
doubt you and your code. Finally, every once in a while, the reader will be some pedant who just
becomes irrational when forced to read poor spelling and grammar.?

If you think about it, spelling and grammar are the analog of the struggle we go through to
write a program that means and does what we want. We have to spell all the keywords, types and
identifiers correctly and use the syntax of the language properly to get our program to work. We
just need to put in the same effort on our documentation; less, actually, because English is both
more familiar and less demanding than programming languages.

The only time when spelling and grammar rules can be broken is in end-of-line comment when
abiding by the rules would cause visual clutter because the comment would have to be continued
on the next line. Consider the following:

(*tail) = new Node; // Add new node to end of list.

tail = &((*tail)->next); // Update the tail pointer to be the
// address of the ‘‘mnext’’ data member
// in the last element of the list

Is this clearer than the original? Probably a little clearer. Yet it took three lines, resulting in
either (1) blank lines in our program, which breaks the visual rhythm of the code or (2) putting
the documentation at the end of other lines of code, which would be confusing. Neither of these
is worth it. Abbreviate and telegraph as much as reasonable when using end of line comments.
Of course, you can’t sacrifice clarity: if the documentation isn’t clear, it’s not worth it. So, if the
end-of-line comment just can’t be done, go to an in-code block comment, as follows:

(*tail) = new Node; // Add new node to end of list.

// Update the tail pointer to be the address of the ‘‘next’’
// data member in the last element of the list
tail = &((*tail)->next);

I sometimes like to precede such comments with a blank line, so that the reader knows to shift
gears when reading the code. However, with modern font coloring by Emacs, the comment will be
in a different color and so the reader will be easily able to distinguish code from comments.

Rule 12 Remember that screens and printers have finite width. Stick to an 80-character line.

Back in the olden days, screens and printers weren’t bitmapped and there was only one, fixed-
size font. Screens were exactly 80 characters wide and 24 lines long, and printers put 80 characters
on a line (unless you had a line-printer, which could go to 132 characters) and 66 lines on a
page. The 80 comes from the really ancient times, when programs were written in FORTRAN on
80-column punched cards.

Why should you, who are fortunate enough to live in modern times, care about keeping below
80 characters on a line? There are two related reasons. First, maybe you can select a smaller
font so that more characters can fit on a screen or the page, but you and others don’t really want
to read a font that small. Secondly, there are psychological and physiological studies of human

3Unluckily for you, I'm one of those people.

12

reading that shows that the human eye doesn’t track so well from line to line (typically in the
fast movement from the end of one line to the beginning of the next) when the line is very long.
This is not so much an issue with code, since the lines aren’t that long, but with documentation it
is. Since modern times haven’t made eyes any better or paper any wider, keep your line width in
documentation to 80 characters, and do the same for your code, too.

You can check your width in Emacs with C-x =.

6 Rule Summary

This summary just recapitulates all the rules.

1.

2.

10.
11.

12.

Don’t explain the obvious.

All names should be descriptive and accurate.

. Be consistent with capitalization and punctuation of names. Decide on a scheme and stick

with it.

. Functions should do just one thing.

. Indentation is important. Code must be properly indented to show the syntactic structure of

the program.

. A statement that belongs to (is part of) another statement should be indented relative to

the containing statement. Statements that are at the same level in the syntax tree should be
indented the same amount.

. Document the program as a whole. What does it do, and what are its inputs and outputs.

Say who wrote it, and when.

. Document functions. Each function should be preceded by a brief paragraph explaining what

it does, how it works (if necessary) and the meaning of its arguments and return values.

. Document variables and data members. Explain the purpose and use of the data and any

non-obvious aspects of its implementation.
Document any code that is not obvious.
Use proper spelling and grammar, except when brevity is more important.

Remember that screens and printers have finite width. Stick to an 80-character line.

7 Conclusion

We have looked at a great many examples, and we have seen some general rules, but our work has
really only begun. We have started to try to think about code from the point of view of our reader,
the person we are really trying to communicate with, rather than thinking about the compiler.
But writing is hard, and rules change over time. For example, there was a time when I would
be castigated for starting the sentence before this with “but,” because “but” is a coordinating
conjunction, and there is no clause that I was coordinating with. Fortunately, that rule is less
enforced nowadays, and I felt I had a good rhetorical reason for breaking it. In other words, I was

13

willing to break a rule in order to strive for better communication. The rules serve us, not vice
versa.

Because writing is hard, even though you’ve had many years of practice, you should expect that
proper programming style is difficult, too. Indentation, braces, and simple stuff like that you’ll
pick up quickly. What takes years of practice—and we’re all still learning—is trying to anticipate
what the reader will and won’t understand, and describing the code in ways that make it clear
and accessible. Even choosing good names for variables and functions is cause for thought and
consideration. If you start feeling sorry for yourself, remember that, compared to writing a good
essay, documentation is easy.

Work at it, practice, and, if you're in doubt, ask your professor. We don’t all have the same
style, and our answers won’t necessarily agree, but we do have more experience and we’ll do our
best to help. Becoming a good programmer includes good documentation, because even the most
brilliant code becomes obsolete if no one can understand it. Finally, even if it’s not your life’s
ambition to be a great programmer, learning to express your ideas clearly in English is important.

14

