Readings on Bézier Curves and Surfaces

1 Additional Reading

Most of what I know about Curves and Surfaces I learned from Angel’s book, so check that chapter first. It’s pretty mathematical in places, though. There’s also a chapter of the Red Book (the Red OpenGL Programming Guide).

2 Organization

This reading is organized as follows. First, we look at why we try to represent curves and surfaces in graphics models, but I think most of us are already pretty motivated by that. Then, we look at major classes of mathematical functions, discussing the pros and cons, and finally choosing cubic parametric equations. Next, we describe different ways to specify a cubic equation, and we ultimately settle on Bézier curves. Finally, we look at how the mathematical tools that we’ve discussed are reflected in OpenGL code.

The preceding develops curves (that is, 1D objects — wiggly lines). In graphics, we’re mostly interested in surfaces (that is, 2D objects — wiggly planes). The last sections define surfaces as a generalization of what we’ve already done with curves.

3 Introduction

Bézier curves were invented by a mathematician working at Renault, the French car company. He wanted a way to make formal and explicit the kinds of curves that had previously been designed by taking flexible strips of wood (called splines, which is why these mathematical curves are often called splines) and bending them around pegs in a pegboard.

To give credit where it’s due, another mathematician named de Castelau independently invented the same family of curves, although the mathematical formalization is a little different.

4 Representing Curves

Most of us know about different kinds of curves, such as parabolas, circles, the square root function, cosines and so forth. Most of those curves can be represented mathematically in several ways:

- explicit equations
- implicit equations
- parametric equations
4.1 Explicit Equations

The explicit equations are the ones we’re most familiar with. For example, consider the following functions:

\[
\begin{align*}
y &= mx + b \\
y &= ax^2 + bx + c \\
y &= \sqrt{r^2 - x^2}
\end{align*}
\]

An explicit equation has one variable that is dependent on the others; here it is always \(y \) that is the dependent variable: the one that is calculated as a function of the others.

An advantage of the explicit form is that it’s pretty easy to compute a bunch of values on the curve: just iterate \(x \) from some minimum to some maximum.

One trouble with the explicit form is that there are often special cases (for example, vertical lines). Another is that the limits on \(x \) will change from function to function (the domain is infinite for the first two examples, but limited to \(\pm r \) for the third). The deadly blow is that it’s hard to handle non-functions, such as a complete circle, or a parabola of the form \(x = ay^2 + by + c \). You could certainly get a computer program to handle this form, but you’d need to encode lots of extra stuff, like which variable is the dependent one and so forth. Bézier curves can be completely specified by just an array of coefficients.

4.2 Implicit Equations

Another class of representations are implicit equations. These equations always put everything on one side of the equation, so no variable is distinguished as the dependent one. For example:

\[
\begin{align*}
ax + by + cz - d &= 0 \quad \text{plane} \\
ax^2 + by^2 + cz^2 - d^2 &= 0 \quad \text{egg}
\end{align*}
\]

These equations have a nice advantage that, given a point, it’s easy to tell whether it’s on the curve or not: just evaluate the function and see if the function is zero. Moreover, each of these functions divides space in two: the points where the function is negative and the points where it’s positive. Interestingly, the surfaces do as well, so the sign of the function value tells you which side of the surface you’re on. (It can even tell you how close you are.)

The fact that no variable is distinguished helps to handle special cases. In fact, it would be pretty easy to define a large general polynomial in \(x, y \) and \(z \) as our representation.

The deadly blow for this representation, though, is that it’s hard to generate points on the surface. Imagine that I give you a value for \(a, b, c \) and \(d \) and you have to find a value for \(x, y \), and \(z \) that work for the two examples above. Not easy in general. Also, it’s hard to do curves (wiggly lines); in general, those are the intersection of two surfaces.

4.3 Parametric Equations

Finally, we turn to the parametric equations. We’ve seen these before, of course, in defining lines, which are just straight curves.
Figure 1: Using cubic curves. (a) shows four points specifying a curve, (b) and (c) show curves being joined up for more complex curves.

With parametric equations, we invent some new variables, the *parameters*, typically \(s \) and \(t \). These variables are then used to define a function for each coordinate:

\[
\begin{bmatrix}
 x(s, t) \\
 y(s, t) \\
 z(s, t)
\end{bmatrix}
\]

Parametric functions have the advantage that they’re easy to generalize to 3D, as we already saw with lines.

The parameters tell us where we are on the *surface* (or curve) rather than where we are in space. Therefore, we have a conventional domain, namely the unit interval. That means that, like our line segments, our curves will all go from \(t = 0 \) to \(t = 1 \). (They don’t have to, but they almost always do.) Similarly, surfaces are all points where \(0 \leq s, t \leq 1 \). Thus, another advantage of parametric equations is that it’s easy to define finite segments and sheets, by limiting the domains of the parameters.

The problem that remains is what family of functions we will use for the parametric functions. One standard approach is to use polynomials, thereby avoiding trigonometric and exponential functions, which are expensive to compute. In fact, we usually choose a cubic:

\[
x(t) = C_0 + C_1 t + C_2 t^2 + C_3 t^3
\]

Another problem comes with finding these coefficients. We’ll develop that in later sections, but the solution is essentially to appeal to some nice techniques from linear algebra that let us solve for the desired coefficients given some desired constraints on the curve, such as where it starts and where it stops.

5 Why We Want Low Degree

Why do we typically use a cubic? Why not something of higher degree, which would let us have more wiggles in our curves and surfaces? This is a reasonable question.

In general, we want a low degree: quadratic, cubic or something in that neighborhood. There are several reasons:

- The resulting curve is smooth and predictable over long spans. In other words, because it wiggles less, we can control it more easily. Consider trying to make a nice smooth curve with a piece of cardboard or thin wood (a literal spline) versus with a piece of string.
• It takes less information to specify the curve. Since there are four unknown coefficients, we need four points (or similar constraints) to solve for the coefficients. If we were using a quartic, we’d need 5 points, and so forth.

• If we want more wiggles, we can join up several splines. Because of the low degree, we have good control of the derivative at the end points, so we can make sure that the curve is smooth through the joint.

• Finally, it’s just less computation and therefore easier for the graphics card to render.

OpenGL will permit you to use higher (and lower) degree functions, but for this presentation we’ll stick to cubics. If you’d like to play with higher degree functions, I’m happy to help you with that. Figure 1 shows points defining a curve, and how curves might be put together to be smooth at the joints.

6 Ways of Specifying a Curve

Once we’ve settle on a family of functions, such as cubics, what remains is determining the values of the coefficients that give us a particular curve. If I want, for example, a curve that looks like the letter “J,” what do I have to do? It turns out that there are three major ways of doing that. (It’s strange how everything seems to break down into threes in this subject.)
Interpolation That is, you specify 4 points on the curve and the curve goes through (interpolates) the points. This is pretty intuitive, and a lot of drawing programs allow you to do this, but it’s not often used in CG. This is primarily because such curves have an annoying way of suddenly lurching as they struggle to get through the next specified point.

One exception is that this technique is often used when you have a lot of data, as with a digitally scanned face or figure. Then you have thousands of points, and the curve pretty much has no choice but to be what you want (although the graphics artist may still want to do some smoothing, say for measurement error or something).

Hermite In the Hermite case, the four pieces of information you specify are 2 points and 2 vectors: the points are where the curve starts and ends, and the vectors indicate the direction of the curve at that point. They are, in fact, derivatives. (If you’ve done single-dimensional calculus, you know that the derivative gives the slope at any point and the slope is just the direction of the line; the same idea holds in more dimensions.) This is a very important technique, because we often have this information. For example, if I want a nice rounded corner on a square box, I know the slope at the beginning (vertical, say) and at the end (horizontal).

Bézier With a Bézier curve, we specify 4 points, as follows: the curve starts at one, heading for second, ends at fourth, coming from third. (See the picture in figure 2.) This is a very important technique, because you can easily specify a point using a GUI, while a vector is a little harder. It turns out there are other reasons that Bézier is preferred, and in practice the first two techniques are implemented by finding the Bézier points that draw the desired curve.

Figure 2 compares these three approaches. An X11 drawing program that will let you experiment with the examples drawn in the figure is *xfig*. (Xfig uses quadratic Bézier curves.) Try it! For a demo of drawing Bézier curves in 2D using OpenGL, try

```
```

OpenGL curves are drawn by calculating points on the line and drawing straight line segments between those points. The more segments, the smoother the resulting curve looks. The CurveDraw.cc demo requires you to specify on the command line the number of segments in the drawing of the curve. Try different numbers of segments until the curves look pretty smooth.

6.1 Solving for the Coefficients

We’ll now discuss how we can solve for the coefficients given the control information (the four points or the two points and two vectors). Essentially, we’re solving four simultaneous equations. We won’t do all the gory details, but we’ll appeal to some results from linear algebra.

Let’s look at how we solve for the coefficients in the case of the interpolation curves; the others work similarly.

Note that in every case, the parameter is *t* and it goes from 0 to 1. For the interpolation curve, the interior points are at *t* = 1/3 and *t* = 2/3. Let’s focus just on the function for *x(t)*. The other
dimensions work the same way. If we substitute $t = \{0, \frac{1}{3}, \frac{2}{3}, 1\}$ into the cubic equations 1, we get the following:

\[
\begin{align*}
P_0 &= x(0) = C_0 \\
P_1 &= x(1/3) = C_0 + \frac{1}{3}C_1 + \left(\frac{1}{3}\right)^2 C_2 + \left(\frac{1}{3}\right)^3 C_3 \\
P_2 &= x(2/3) = C_0 + \frac{2}{3}C_1 + \left(\frac{2}{3}\right)^2 C_2 + \left(\frac{2}{3}\right)^3 C_3 \\
P_3 &= x(1) = C_0 + C_1 + C_2 + C_3
\end{align*}
\]

What does this mean? It means that the x coordinate of the first point, P_0, is $x(0)$. This makes sense: since the function x starts at P_0, it should evaluate to P_0 at $t = 0$. (This is also exactly what happens with a parametric equation for a straight line: at $t = 0$, the function evaluates to the first point.) Similarly, the x coordinate of the second point, P_1, is $x(1/3)$ and that evaluates to the expression that you see there. Most of those coefficients are still unknown, but we’ll get to how to find them soon enough.

Putting these four equations into a matrix notation, we get the following:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & \frac{1}{3} & \left(\frac{1}{3}\right)^2 & \left(\frac{1}{3}\right)^3 \\
1 & \frac{2}{3} & \left(\frac{2}{3}\right)^2 & \left(\frac{2}{3}\right)^3 \\
1 & 1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
C_0 \\
C_1 \\
C_2 \\
C_3
\end{bmatrix}
\]

The P matrix is a matrix of points. It could just be the x coordinates of our points P, or more generally it could be a matrix each of whose four entries is an (x, y, z) point. We’ll view it as a matrix of points. The matrix C is a matrix of coefficients, where each element — each coefficient — is a triple (C_x, C_y, C_z), meaning the coefficients of the $x(t)$ function, the $y(t)$ function and the $z(t)$ function.

If we let A stand for the array of numbers, we get the following deceptively simple equation:

\[
P = AC
\]

By inverting the matrix A, we can solve for the coefficients! (The inverse of a matrix is the analog to a reciprocal. It’s also equivalent to solving the simultaneous equations in a very general way.) The inverse of A is called the interpolating geometry matrix and is denoted M_I:

\[
M_I = A^{-1}
\]

Notice that the matrix M_I does not depend on the particular points we choose, so that matrix can simply be stored in the graphics card. When we send an array of control points, P, down the pipeline, the graphics card can easily compute the coefficients it needs for calculating points on the curve:

\[
C = M_IP
\]
Figure 3: The blending functions for interpolating curves.

The same approach works with Hermite and Bézier curves, yielding the Hermite geometry matrix and the Bézier geometry matrix. In the Hermite case, we take the derivative of the cubic and evaluate it at the endpoints and set it equal to our desired vector (instead of points P_1 and P_2). In the Bézier case, we use a point to define the vector and reduce it to the previously solved Hermite case.

6.2 Blending Functions

Sometimes, looking at the function in a different way can give us additional insight. Instead of looking at the functions in terms of control points and geometry matrices, let’s look at them in terms of how the control points influence the curve points.

Looking just at the functions of t that are combined with the control points, we can get a sense of the influence each control point has over each curve point. The influences of the control points are blended to yield the final curve point, and these functions are called blending functions. (Blending functions are also important for understanding NURBS, which we may cover later in the course.) Equivalently, the curve points are a weighted average of the control points, where the blending functions give the weight. (We looked at weighted averages in our discussion of bi-linear interpolation.) That is, if you evaluate the four blending functions at a particular parameter value, t, you get four numbers, and those numbers are weights in a weighted sum of the four control points.

The following function gives the curve, $P(t)$, as a weighted sum of the four control points, where the four blending functions evaluate to the appropriate weight as a function of t.

$$P(t) = B_0(t) * P_0 + B_1(t) * P_1 + B_2(t) * P_2 + B_3(t) * P_3$$

The following are the blending functions for interpolating curves.

$$B_0(t) = -\frac{9}{2}(t - \frac{1}{3})(t - \frac{2}{3})(t - 1)$$

$$B_1(t) = \frac{27}{2}t(t - \frac{2}{3})(t - 1)$$

$$B_2(t) = -\frac{27}{2}t(t - \frac{1}{3})(t - 1)$$
These functions are plotted in figure 3. First, notice that the curves always sum to 1. When a curve is near zero, the control point has little influence. When a curve is high, the weight is high and the associated control point has a lot of influence: a lot of “pull.” In fact, when a control point has a lot of pull, the curve passes near it. When a weight is 1, the curve goes through the control point.

Notice that the blending functions are negative sometimes, which means that this isn’t a normal weighted average. (A normal weighted average has all non-negative weights.) What would a negative weight mean? If a positive weight means that a control point has a certain “pull,” a negative value gives it “push” — the curve is repelled from that control point. This repulsion effect is part of the reason that interpolation curves are hard to control.

7 Hermite Representation

The coefficients for the Hermite curves and therefore the blending functions can be computed from the control points in a similar way (we have to deal with derivatives, but that’s not the point right now).

Note that the derivative (tangent) of a curve in 3D is a 3D vector, indicating the direction of the curve at this moment. (This follows directly from the fact that if you subtract two points, you get the vector between them. The derivative of a curve is simply the limit as the points you’re subtracting become infinitely close to each other.)
The Hermite blending functions are the following.

\[b(t) = \begin{bmatrix} 2t^3 - 3t^2 + 1 \\ -2t^3 + 3t^2 \\ t^3 - 2t^2 + t \\ t^3 - t^2 \end{bmatrix} \]

The Hermite blending functions are plotted in figure 4. The Hermite curves have several advantages:

- Smoothness:
 - easier to join up at endpoints. Because we control the derivative (direction) of the curve at the endpoints, we can ensure that when we join up two Hermite curves that the curve is smooth through the joint: just ensure that the second curve starts with the same derivative that the first one ends with.
 - The blending functions don’t have zeros in the interval: so the influence of a control point never switches from positive to negative. For example, the influence of the first control point peaks at the beginning and steadily, monotonically drops to zero over the interval.

- The Hermite can be easier to control. As we mentioned earlier, there’s no need to know interior points, and we often only know how we want a curve to start and end.

8 **Bézier Curves**

The Bézier curve is based on the Hermite, but instead of using vectors, we use two control points. Those control points are not interpolated though: they exist only in order to define the vectors for the Hermite, as follows:

\[
P'(0) = \frac{p_1 - p_0}{1/3} = 3(p_1 - p_0)
\]

\[
P'(1) = \frac{p_3 - p_2}{1/3} = 3(p_3 - p_2)
\]

That is, the derivative vector at the beginning is just three times the vector from the first control point to the second, and similarly for the other vector. Figure 5 shows the derivative vectors and the Bézier control points.
Like the Hermite, Bézier curves are easily joined up. We can easily get continuity through a joint by making sure that the last two control points of the first curve line up with the first two control points of the next. Even better, the interior control points should be equally distant from the joint. This ensures that the derivatives are equal and not just proportional.

The blending functions are especially nice, as seen in equation 3. (In that equation we are using u as the parameter instead of t.)

$$b(u) = M_T^T u = \begin{bmatrix}
3u^2(1-u) \\
3u(1-u)^2 \\
(1-u)^3 \\
u^3
\end{bmatrix}
$$

The functions in eq 3, which are plotted in figure 6, are from the Bernstein polynomials:

$$b_{kd}(u) = \binom{d}{k} u^k (1-u)^{d-k}$$

These can be shown to:

- Have all roots at 0 and 1
- Be non-negative in the interval [0,1]
- Be bounded by 1
- Sum to 1

Perfect for mixing! Thus, our Bezier curve is a weighted sum, so geometrically, all points must lie within the convex hull of the control points, as shown in the following figure:
To be concrete, let’s take an example of the Bézier blending functions. For example, what is the midpoint of a Bézier curve? The midpoint is at a parameter value of $u = 0.5$. Evaluating the four functions in equation 3, we get:

$$b(\frac{1}{2}) = M_B^T \frac{1}{2} = \begin{bmatrix} (1 - \frac{1}{2})^3 \\ \frac{3}{2}(1 - \frac{1}{2})^2 \\ \frac{3}{2}(1 - \frac{1}{2})^2 \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1/8 \\ 3/8 \\ 3/8 \\ 1/8 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 1 \\ 3 \\ 3 \\ 1 \end{bmatrix}$$

Thus, to find the coordinates of the midpoint of a Bezier curve, we only need to compute this weighted combination of the control points. Essentially:

$$P(0.5) = \frac{1}{8}P_0 + \frac{3}{8}P_1 + \frac{3}{8}P_2 + \frac{1}{8}P_3 = (P_0 + 3P_1 + 3P_2 + P_3)/8$$

It turns out that there’s a very nice recursive algorithm for computing every point on the curve by successively dividing it in half like this.

9 Bezier Curves in OpenGL

To draw a curve in OpenGL, the main thing we have to do is to specify the control points. However, there are other things we might want OpenGL to calculate for us. Here are some:

- vertices (points on the curve or surface)
- normals
- colors
- texture coordinates

They all work the same way. For example, if we specify four control points, we can have OpenGL compute any point on the curve, and if we specify four colors (one for each of those points), we can have OpenGL compute the color of the associated point, using the same blending functions.

Each of these is called an evaluator. You can have multiple evaluators active at once, say for vertices and colors.

The basic OpenGL functions for curves are (in C):

```
glMap1f(target, u_min, u_max, stride, order, point_array);
glEnable(target);
glEvalCoord1f(u);
```

And in Python, because Python will figure out the stride for us:

```
glMap1f(target, u_min, u_max, point_array);
glEnable(target);
glEvalCoord1f(u);
```
The first two are setup functions. The first, `glMap1f()`, is how we specify all the control information (points, colors, or whatever). The target is the kind of control information you are specifying and the kind of information you want generated, such as:

- GL_MAP1_VERTEX_3, a vertex in 3D
- GL_MAP1_VERTEX_4, a vertex in 4D (homogeneous coordinates)
- GL_MAP1_COLOR_4, a RGBA color
- GL_MAP1_NORMAL, a normal vector
- GL_MAP1_TEXTURE_COORD_1, a texture coordinate. (We’ll talk about textures in a few weeks.)

The u_min and u_max arguments are just the min and max parameter, so they are typically 0 and 1, though if you just want a piece out of the curve, you can use different values. For example, to get the middle fifth of the curve, you could give u_min = 0.4 and u_max = 0.6.

The stride is a complicated thing that we’ll talk about below. The order is one more than the degree of the polynomial (4 for a cubic) and is therefore equal to the number of control points we are supplying. Since Python knows how long its arrays are, it can count that for you. Finally, an array of the control information: vertices, RGBA values or whatever. They should be of the same type as the target.

The second function, `glEnable()`, simply enables the evaluator; you can enable and disable them like lights or textures.

Finally, the last function, `glEvalCoord1f()`, replaces functions like `glVertexf()`, `glColorf()` and `glNormalf()`, depending on the target. In other words, that’s the one that actually calculates a point on the curve or its color or whatever, and sends it down the pipeline. Here’s an example of how you might do 100 evenly spaced steps on a curve:

```python
 glBegin(GL_LINE_STRIP)
  for i in range(101):
    glEvalCoord1f(i/100.0)  # instead of glVertex3f
 glEnd()
```

If you know that you just want evenly spaced steps (which is often the case), you can use the following two functions instead of calls to `glEvalCoord`.

```python
 glMapGrid1f(steps, u_min, u_max)
 glEvalMesh1(GL_LINE, start, stop)
```

This is a grid of ‘steps’ (say 100), from the minimum u to the maximum u (typically 0.0 to 1.0, but not necessarily). The second actually evals the mesh from ‘start’ (typically 0) to ‘stop’ (typically the same as ‘steps’).

The demo `cs307/public_html/demos/curves-and-surfaces/FunkyCurve.cc` shows a particular curve that starts and ends along the edges of a box. The code is relatively terse, and is well worth looking at. See figure 7 on page 13.
This program displays a funky curve through the unit cube. This program aims to be as simple as possible.

Scott D. Anderson
Fall 2003
Fall 2009, ported to Python

```python
twColorName(TW_CYAN)
```
9.1 Strides

What the heck is a stride? Since the control point data is given to OpenGL in one flat array, the stride is the number of elements to skip to get from one row/column to the next row/column.

For curves, the stride is almost always 3, because the elements are 3-place coordinates consecutive in memory. If you’re specifying colors, the stride will be 4, because the elements are 4-place RGBA values consecutive in memory. The stride becomes more complicated when we deal with 2D surfaces instead of 1D curves.

10 Representing Surface Patches

Using parametric representation, each coordinate becomes a function of two new parameters:

\[x(s, t) = C_{00} + C_{01}t + C_{02}t^2 + C_{03}t^3 + C_{10}s + C_{11}st + C_{12}st^2 + C_{13}st^3 + C_{20}s^2 + C_{21}s^2t + C_{22}s^2t^2 + C_{23}s^2t^3 + C_{30}s^3 + C_{31}s^3t + C_{32}s^3t^2 + C_{33}s^3t^3 \]

or

\[x(s, t) = \sum_{i=0}^{3} \sum_{j=0}^{3} C_{ij} s^i t^j \]

And similarly for \(y \) and \(z \). Since there are 16 coefficients, need 16 points on the patch.

Note that the four edges of a Bézier surface are Bézier curves, which helps a great deal in understanding how to control them. That helps us to understand 12 of the 16 control points.

The four interior points are hard to interpret. Concentrating on one corner: if it lies in the plane determined by the three boundary points, the patch is locally flat. Otherwise, it tends to twist. This is hard to picture. It is, of course, related to the double partial derivative of the curve:

\[\frac{\partial^2 p}{\partial u \partial v} (0, 0) = 9(p_{00} - p_{01} + p_{10} - p_{11}) \]
11 Bezier Surfaces in OpenGL

To handle surfaces, we just convert the OpenGL functions from section 9 above to 2D. The basic functions are:

```c
GLfloat* point_array)

And in Python, because Python will figure out the strides for us:

```python

glMap2f(target, u_min, u_max, v_min, v_max, point_array);
glEnable(target);
glEvalCoord2f(u,v);
```

Here, it’s even more common to let OpenGL do the work of generating all the points:

```c

```

12 Texture Mapping

If you’re doing texture mapping, you can have OpenGL calculate texture coordinates for you at each of the surface points, just by setting up and enabling that target:

```c

Because texture-mapping is 2D, the texture coordinates are often generated by a linear Bézier function, such as:

```c

Here the texture coordinates (0,0) will correspond to the first spatial corner, and the (s,t) texture coordinates will equal the (u,v) Bézier parameters.

13 Normal Vectors

If you want to use lighting on a surface, you have to generate normals as well. You can do it yourself using
Figure 8: Normals for Bezier surfaces are computed as $u \times v$.

```c
glMap2f(GL_MAP2_VERTEX_3, u_min, u_max, v_min, v_max, point_array)
glEnable(GL_MAP2_VERTEX_3)

glMap2f(GL_MAP2_NORMAL, u_min, u_max, v_min, v_max, normal_array)
glEnable(GL_MAP2_NORMAL)
```

However, you can make OpenGL compute the normals for you:

```c
glMap2f(GL_MAP2_VERTEX_3, u_min, u_max, v_min, v_max, point_array)
glEnable(GL_MAP2_VERTEX_3)

glEnable(GL_AUTO_NORMAL)

TW enables GL_AUTO_NORMAL for you.
```

However, when OpenGL generates a normal vector for you, how does it do it? The answer is surprisingly simple, and yet the implications aren’t obvious.

To be concrete, suppose we want to have a linear Bezier surface. This means there are only four control points: the four corners, since the interior is all just bi-linear interpolation. See figure 8. The normal for the surface in that figure will face towards us because it is computed as $u$ (the red arrow) cross $v$ (the green arrow). The $u$ and $v$ vectors are determined by the direction of the two parameters in the description of the Bezier surface. For example, the control points for the quadratic Bezier surface in figure 8 would be defined as follows:

```c
cp = (((Ax, Ay, Az), (Bx, By, Bz)),
 ((Dx, Dy, Dz), (Cx, Cy, Cz)))

glMap2f(GL_MAP2_VERTEX3, 0, 1, 0, 1, cp)
```

This works because the $u$ dimension is what we would call “left to right” and so we give the points as A then B and D then C (with a $u$-stride of 3). The $v$ dimension is what we would call “bottom to top” and so we give the points as A then D and B then C (with a $v$-stride of 6). The $u$ dimension nests “inside” the $v$ dimension, and so the control points are given in the order ABDC. The right-hand-rule tells us that “left-to-right” crossed with “bottom-to-top” yields a vector that points towards us.

Of course, in that example, we decided to give the lower left corner (vertex A) first. If we decided to have the upper left corner first (vertex D), and we still wanted to have the surface normal face towards us, we would give the control points in the order DACB, because the $u$ dimension is
determined by DA and CB, which is “top to bottom” and the \( v \) dimension is “left to right” so AB and DC (as before).

You can have any control point first and still determine the surface normal. An example of this coding can be seen in

```
```

### 14 Demos

We’ll look at several demos of how to do Bézier curves. All of the following are in public_html/pytw/demos-curves-and-surfaces.

- **FunkyCurve.py** We put the code for this above. Note how the curve control points are defined and drawn. The curve isn’t very smooth. How can we make it smoother? Notice the stride.
- **CokeSilhouette.py** This draws does two three-part curves, reflected across the \( y \) axis.
  - See how we ensure that the curves line up properly at the joints.
  - Note the reflection code and the alternative using glScalef.
  - We could still use affine transformations to place the silhouette anywhere we want.
  - Look at how the arrays are defined.
- **BezierTutor** This program can help you define curves.
- **Flag.py** This is a simple demonstration of a 2D Bézier surface. There’s no lighting in this example.
- **Dome.cc** This program shows a nicely symmetrical dome, with an interface that lets you modify one of the points. The code needs to be updated to use TW, but the code might still be interesting, particularly the way we take one curve and turn it into a symmetrical dome.
- **CokeBottle.py** The “famous” Coke bottle.
  - Before we look at this, we’ll discuss circular arcs, described in section 15, below.
  - Look at how the arrays are defined and used, and contrast this with CokeSilhouette.py.
  - Look at how lighting and normals are done.

### 15 Circular Arcs with Bézier

It’s a useful exercise to consider how to do a circle using Bezier curves, as opposed to computing lots of sines and cosines. Note that it is mathematically impossible to do this perfectly, since Bezier curves are polynomials and a circle is not any polynomial, but the approximation might be good enough.
First, note that we can’t do a full circle with one curve, because the first and last control points would be the same and the bounding region would have no area.

So, let’s try a half-circle. Observe that the requirement that the curve is tangent to the line between the first two control points and between the last two control points, together with symmetry, gives us:

\[ (-1,a) \]
\[ (1,a) \]
\[ (-1,0) \]
\[ (1,0) \]

Using the formula for the midpoint of the curve, in equation 4, we get:

\[
1 = \frac{(0 + 3a + 3a + 0)/8}{6a/8} \Rightarrow a = \frac{4}{3}
\]

Trying this value, however, yields an approximation that isn’t really good enough:

Let’s try a quarter-circle. We get:

\[ (0,1) \]
\[ (a,1) \]
\[ (1,a) \]
\[ (1,0) \]

Using the formula for the midpoint of the curve again, we get:

\[
\begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix} = \left( \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} a \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ a \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)/8
\]

\[
\begin{bmatrix} 4\sqrt{2} \\ 4\sqrt{2} \end{bmatrix} = \begin{bmatrix} 4 + 3a \\ 4 + 3a \end{bmatrix}
\]

\[
4(\sqrt{2} - 1) = 3a
\]

\[
a = \frac{4(\sqrt{2} - 1)}{3} \approx 0.55
\]

Trying this value yields a pretty good approximation:
We can then get the rest of the circle with rotations.