Reading on Plane Geometry

Some of this explanation is helped and improved by Dan Sunday’s work at GeometryAlgorithms.com. (You can click on the pink links in this document).

As we’ve seen, CG usually breaks down a model into a large number of planar regions (quads and triangles). Even curved surfaces are ultimately rendered as a large number of planar facets. Very often the CG system then needs to do some additional geometry with the planes, such as determining if a ray of light (say from a spotlight), intersects the planar region. To do that, we need a bit of geometry.

Recall that we had to do this with the picking demo, cube picking. With that example, the code had to find out what cubes are intersected by the ray from the eye through the mouse position.

1 Implicit Equation of a Plane

First, let’s see how to define the implicit equation of a plane. Let P_0 be a specific point on the plane, any point, but one where we know the coordinate. Let n be the normal vector for the plane. Here is an example:

$$P_0 = (5, 4, 7)$$
$$n = (1, 2, 2)$$

Now, note that any vector lying in the plane must be perpendicular to the normal vector. If we let P be a variable standing for every point in the plane:

$$P = (x, y, z)$$

Then we know that:

$$0 = n \cdot (P - P_0)$$

With a little abuse of notation, we can derive:

$$0 = n \cdot P - n \cdot P_0$$

Using our example:

$$0 = n \cdot (P - P_0)$$
$$= (1, 2, 2) \cdot [(x, y, z) - (5, 4, 7)]$$
$$= (1, 2, 2) \cdot [(x - 5, y - 4, z - 7)]$$
$$= 1(x - 5) + 2(y - 4) + 2(z - 7)$$
$$= x + 2y + 2z - [(1 \cdot 5) + (2 \cdot 4) + (2 \cdot 7)]$$
$$= x + 2y + 2z - 27$$

Note that this is an implicit equation of a plane. It can tell us whether a point is on the plane or not, but it doesn’t easily generate points on the plane. Also, the implicit equation doesn’t generalize to higher dimensions (but that’s a problem for mathematicians, not us).

In general, the equation of a plane in 3D is:

$$ax + by + cz + d = 0$$
2 Parametric Equation of a Plane

Another way to define a plane is by a point on the plane and two vectors that lie in the plane. (This works in higher dimensional spaces, not just 3D.) Let the two vectors be v and w. We can then define the equation:

$$P(s, t) = P_0 + sv + tw$$

A very common situation for this is when we have a triangle of three points, P_0, P_1, P_2, and we develop it like this:

$$v = P_1 - P_0$$

$$w = P_2 - P_0$$

$$P(s, t) = P_0 + sv + tw = (1 - s - t)P_0 + sP_1 + tP_2$$

This is a nice equation using only the three points we started with, plus two parameters. Notice that the point $P(s, t)$ is inside the triangle when:

$$0 \leq s$$

$$0 \leq t$$

$$s + t \leq 1$$

The point is on the perimeter if $s = 0, t = 0$ or $s + t = 1$. Each condition corresponds to one edge. For a parallelogram, we have: $0 \leq s, t \leq 1$.

Of course, if we want the implicit equation, we can take the cross product of v and w to find n, and proceed from there.

3 Fun Facts

3.1 Any Point

Notice that the argument for the implicit equation works for any point on the plane, so that if we used P_1 instead of P_0, we should get the same equation:

$$0 = n \cdot P - n \cdot P_0$$

$$0 = n \cdot P_1 - n \cdot P_0$$

$$n \cdot P_0 = n \cdot P_1$$

This means that the constant term, d, in the equation, is the same for any point on the plane. The normal vector dotted with any point on the plane yields this same value.

3.2 Finding the Normal Vector

Notice that you can just read off a normal vector to a plane from its implicit equation. Very convenient!

3.3 Normalized Normal Vector

In the development, you notice that we just chose an arbitrary normal vector. What happens if we choose a different one (a scalar multiple)?

$$0 = (kn) \cdot (P - P_0)$$
Figure 1: Distance from a Point to a Plane. Q is the point not on the plane, and P₀ is some point on the plane. θ is the angle between the normal vector and the vector from P₀ to Q.

Of course, we can just multiply both sides of this equation by 1/k and get the same result. So it doesn’t matter. It’s common to use a normalized normal vector, so that |n| = 1. Using our example, we have \(n = (1, 2, 2) \), so |n| = 3, so:

\[
0 = x + 2y + 2z - 27 = (1/3)x + (2/3)y + (2/3)z - 9
\]

3.4 Dividing Space

Suppose we define a function on every 3D point in space, mapping each to a scalar:

\[
f(x, y, z) = ax + by + cz + d
\]

Of course, this function will be zero when the point lies on the plane. More interestingly, this function divides space into two halves, and the points on one side of the plane yield a positive result and the points on the other side of the plane yield a negative result. Thus, you can use the function to tell what side of a plane a point is.

3.5 Distance from a Point to a Plane

If we use a normalized normal in our implicit equation, we have an interesting property, namely that the function gives the (signed) distance of the point to the plane. Why?

Let \(\theta \) be the angle between the normal vector and the vector \(w \) from a point on the plane to the point off the plane. (See figure 1.) The perpendicular distance is then:

\[
= |P₀ - Q| \cos \theta = \frac{n \cdot (P₀ - Q)}{|n|}
\]

When |n| = 1, the denominator goes away. Also, since \(P₀ \) is a point on the plane, \(n \cdot P₀ \) is just \(d \), the constant in the implicit equation. Thus we have:
\[\begin{align*}
 & = n \cdot P - n \cdot Q \\
 & = d - n \cdot Q \\
 & = d - aQ_x + bQ_y + cQ_z
\end{align*} \]

This is just our implicit equation! So, the key thing is that if the normal vector is unit length, the implicit equation gives the distance from the point to the line.

4 Intersecting a Ray with a Plane

Suppose we have a point \(Q \) not on the plane (we’ll reserve \(P \) for points on the plane), and a vector \(r \) indicating a ray starting at \(Q \). Does the ray intersect the plane? If so, where? How far?

We could solve this many ways. We will do it by creating a parametric equation of the ray and intersecting that with the implicit equation of the plane. That is, we combine these two equations:

\[
Q(t) = Q + tr \\
0 = ax + by + cz + d
\]

And we get:

\[
0 = a(Q_x + tr_x) + b(Q_y + tr_y) + c(Q_z + tr_z) + d
\]

This is an equation just in \(t \), so we solve for \(t \) and we’re almost home.

Let’s do an example, with \(Q = (11, 15, 8) \) and \(r = (-1, 3, 2) \) and using our plane from before:

\[
0 = (11 - t) + 2(15 + 3t) + 2(8 + 2t) - 27 \\
= 11 - t + 30 + 6t + 16 + 4t - 27 \\
= 9t + 30 \\
t = \frac{-10}{3}
\]

The fact that \(t \) is negative tells us that the ray does not intersect the plane. The ray is moving away from the plane. If we reverse \(r \), we would get a positive \(t \) and the photon torpedo would intersect the plane.

If we compute this intersection parameter with several planes, we know that the ray will hit them in the order of the parameter values.

5 Intersecting a Ray with a Plane Again

The math in the last section is fine, but here’s a better way, again thanks to GeometryAlgorithms.com.

Given a line defined by \(Q \) and \(R \) and a plane defined by \(P \) and \(N \) (all knowns; I’ve dropped the subscripts for convenience), we can substitute the parametric representation of a line into one of our representations of a plane:

\[(Q + tR) \cdot N = P \cdot N\]

From there, we can use some reasonable algebra to solve for \(t \):
\[(Q + tT) \cdot N = P \cdot N\]
\[Q \cdot N + t(R \cdot N) = P \cdot N\]
\[t(R \cdot N) = P \cdot N - Q \cdot N\]
\[t(R \cdot N) = (P - Q) \cdot N\]
\[t = \frac{(P - Q) \cdot N}{R \cdot N}\]

Not exactly intuitive, but simple to compute!

We should check for special cases:

- A ray parallel to the plane (which means there’s no intersection). If that’s the case, the ray will be perpendicular to the surface normal, or \(R \cdot N = 0\). So, we just check that the denominator is not zero.

- A ray lying in the plane. If that happens, not only will the ray be parallel to the plane, but the point \(P\) will lie on the plane. That means \((P-Q)\) is a vector lying in the plane and therefore the dot product with the normal vector is zero. Thus, in this case, the numerator is zero.

6 Intersecting a Ray with a Triangle

But we don’t care about whether the ray intersects the plane, we care whether it intersects a triangle or a quad. We can compute the point of intersection (from the parameter and our parametric equation of the ray), and then try to compute the \(s\) and \(t\) values so that we can use the constraints in section 2.

6.1 Dot Products as Projections

Before we develop the code for finding the intersection point within a triangle, it’s helpful to have as a building block a more complete understanding the usefulness of the dot product.

We know that the dot product gives us something like the cosine of the angle between two vectors. In fact, for unit vectors, it gives us exactly the cosine of the angle between them. Let’s start with unit vectors. Suppose we have unit vectors \(v\) and \(w\). If we compute the following:

\[v' = (v \cdot w)v\]
\[w' = (v \cdot w)w\]
Figure 3: Projecting a non-unit vector.

The \(v' \) and \(w' \) vectors are scalings of the original vectors, where they are scaled by the dot product. Geometrically, this is equivalent to the projection of the other vector onto this one; see figure 2.

But what about non-unit vectors? Consider the projection in figure 3 and assume that \(v \) is a unit vector but \(w \) is not. To project \(w \) onto \(v \), we want to resize \(v \) so that it has a length equal to the length of \(w \) multiplied by the cosine of the angle between \(v \) and \(w \). Call that angle \(\theta \). The length of \(v' \) should be:

\[
|w| \cos(\theta) = |w| \frac{v \cdot w}{|v|} = \frac{v \cdot w}{|v|}.
\]

Since \(|v| = 1\), we can drop that, and we find that:

The dot product gives the projection of any vector onto a unit vector.

6.2 Finding the Intersection Point Parameters

If \(I \) is the intersection point of the line and the plane, we have:

\[
I = P_0 + s(P_1 - P_0) + t(P_2 - P_0) = P_0 + su + tv
\]

We have to solve this for \(s \) and \(t \), the parameters of the intersection point. Since we have three dimensions in two unknowns, we can certainly solve this. Indeed, we can solve it three different ways, depending on which equation we decide to leave out. I consulted GeometryAlgorithms.com and decided, for better or worse, to solve it using their math.

Here’s my explanation of their math. If you’d like to see their way, consult algorithm0105.

Let \(w \) be the vector from \(P_0 \) to the intersection point: \(w = I - P_0 \). We want to solve the following equation for \(s \) and \(t \).

\[
w = su + tv
\]

Note that this equation just says that \(w \) is a linear combination of vectors \(u \) and \(v \).

They solve this in a very clever way. To solve for \(t \), they construct a vector that is orthogonal (perpendicular) to \(u \) but that also lies in the plane; call it \(u^\perp \), pronounced “\(u \) perp.” The dot product of \(u^\perp \) with \(u \) is, of course, zero, so taking the dot product of the right side of this equation with \(u^\perp \) nullifies the \(su \) term, leaving an equation with only the \(t \) parameter to solve for. Of course, there are infinitely many vectors perpendicular to \(u \); it’s important that they choose one that lies in the plane, since that gives us the situation shown in figure 4.

In that figure, \(a \) and \(b \) are the projections of \(w \) and \(v \) onto \(u^\perp \). The scalar multiples are:

\[
a = w \cdot u^\perp
\]
\[
b = v \cdot u^\perp
\]
Figure 4: Taking the dot product of w with u^\perp (shown as u'). We start with known vectors u, v and w, where w is some linear combination of u and v: $w = su + tv$. We first find u^\perp, the perpendicular to u lying in the plane (denoted u' in the figure). Taking the dot product finds tv, the amount of vector v that is in the linear combination of u and v to make up w.

By similar triangles, the vector tv is to v as a is to b:

$$\frac{tv}{v} = \frac{a}{b}$$

Therefore, we can find $t = a/b$. Here it is again, purely algebraically:

\[
\begin{align*}
 w &= su + tv \\
 w \cdot u^\perp &= (su + tv) \cdot u^\perp \\
 &= s(u \cdot u^\perp) + t(v \cdot u^\perp) \\
 &= t(v \cdot u^\perp) \\
 t &= \frac{w \cdot u^\perp}{v \cdot u^\perp}
\end{align*}
\]

Note that, because the numerator and denominator both have u^\perp in them, it doesn’t matter whether u^\perp is a unit vector, because the scale factor to normalize it appear in both the numerator and denominator and therefore would cancel.

Similarly, we can solve for s by finding a v^\perp that is perpendicular to v and lies in the plane t.

\[
\begin{align*}
 s &= \frac{w \cdot v^\perp}{u \cdot v^\perp}
\end{align*}
\]

How can we find these perpendicular vectors? Since they lie in the plane, they must be perpendicular to the plane normal, N. Since the cross product finds a vector perpendicular to two others, we have:

\[
\begin{align*}
 u^\perp &= N \times u \\
 v^\perp &= N \times v
\end{align*}
\]

Next, they introduce a computational shortcut. It turns out that there is an identity for cross products, namely:
\[(a \times b) \times c = (a \cdot b)b - (b \cdot c)a\]

We’re not even going to think about proving that; we’re just going to use it. Consequently,

\[u^\perp = n \times u = (u \times v) \times u = (u \cdot u)v - (u \cdot v)u\]
\[v^\perp = n \times v = (u \times v) \times v = (u \cdot v)v - (v \cdot v)u\]

And now we can compute \(s\) and \(t\) using only dot products.

\[
s = \frac{(u \cdot v)(w \cdot v) - (v \cdot v)(w \cdot u)}{(u \cdot v)^2 - (u \cdot u)(v \cdot v)}
\]
\[
t = \frac{(u \cdot v)(w \cdot u) - (u \cdot u)(w \cdot u)}{(u \cdot v)^2 - (u \cdot u)(v \cdot v)}
\]

Notice the similarity between the two calculations. Thus, the complete calculation only requires five distinct dot products.

We need to check for special cases where the triangle is degenerate:

- One way this can happen is if two of the points defining the triangle are the same. If this happens, either \(u\) or \(v\) will be the zero vector, and \(u \cdot u = 0\) or \(v \cdot v = 0\).
- Another way is if the three points are colinear, in which case \(u\) is a scalar multiple of \(v\). One way to test for this is to test whether the cosine of the angle between \(u\) and \(v\) is 1, which happens when the angle is zero.

\[
\frac{u \cdot v}{|u||v|} = 1
\]
\[
\frac{u \cdot v}{|u||v|} = |u||v|
\]
\[
(u \cdot v)^2 = (u \cdot u)(v \cdot v)
\]
\[
(u \cdot v)^2 - (u \cdot u)(v \cdot v) = 0
\]

Since the quantity on the left is the denominator of our fractions to compute \(s\) and \(t\), all we need to do is check for zero before dividing.

7 Intersections in Three.js

The code in Three.js is different from the algorithm we gave, above, but we need not concern ourselves about that. We’ll talk more about their code in class, if there is time.

8 Boxing Tests

The code above (both ours and the code in Three.js) is computationally expensive, so we want to avoid it if we can. Hence, we should use “boxing tests” to avoid the expensive computation in cases that are “easy.”

The Three.js code uses two boxing tests: it first tests if the line is too far from the triangle by using a sphere that surrounds the triangle. Then, it tests if the line can’t intersect the triangle because it doesn’t intersect a box surrounding the triangle. If both tests are passed, the expensive test is used. Here’s the overall algorithm (in release 67; it’s changed since then):
var intersectObject = function (object, raycaster, intersects) {
 if (object instanceof THREE.Sprite) {
 // ...
 } else if (object instanceof THREE.Mesh) {
 return intersects;
 }
 // Check boundingBox before continuing

 inverseMatrix.getInverse(object.matrixWorld);
 localRay.copy(raycaster.ray).applyMatrix4(inverseMatrix);
 if (geometry.boundingBox !== null) {
 if (localRay.isIntersectionBox(geometry.boundingBox) === false) {
 return intersects;
 }
 }
 if (geometry instanceof THREE.BufferGeometry) {
 // ...
 } else if (geometry instanceof THREE.Geometry) {
 var isFaceMaterial = object.material instanceof THREE.MeshFaceMaterial;
 var objectMaterials = isFaceMaterial === true ?
 object.material.materials :
 null;
 var a, b, c, d;
 var precision = raycaster.precision;
 var vertices = geometry.vertices;
 }
for (var f = 0, fl = geometry.faces.length; f < fl; f ++) {

 var face = geometry.faces[f];

 var material = isFaceMaterial === true ?
 objectMaterials[face.materialIndex] :
 object.material;

 if (material === undefined) continue;

 a = vertices[face.a];
 b = vertices[face.b];
 c = vertices[face.c];

 if (material.side === THREE.BackSide) {
 var intersectionPoint = localRay.intersectTriangle(c, b, a, true);
 } else {
 var intersectionPoint = localRay.intersectTriangle(a, b, c, material.side !== THREE.DoubleSide);
 }

 if (intersectionPoint === null) continue;

 intersectionPoint.applyMatrix4(object.matrixWorld);

 var distance = raycaster.ray.origin.distanceTo(intersectionPoint);

 if (distance < precision || distance < raycaster.near || distance > raycaster.far) {
 intersects.push({
 distance: distance,
 point: intersectionPoint,
 face: face,
 faceIndex: f,
 object: object
 });
 }
}

Let’s look in more detail at the two boxing tests.

• distance from a point to a line
• bounding containers

Here’s the code for isIntersectionSphere:
isIntersectionSphere: function (sphere) {
 return this.distanceToPoint(sphere.center) <= sphere.radius;
},

and the distanceToPoint function is:

distanceToPoint: function () {
 var v1 = new THREE.Vector3();
 return function (point) {
 var directionDistance = v1.subVectors(point, this.origin).dot(this.direction);
 // point behind the ray
 if (directionDistance < 0) {
 return this.origin.distanceTo(point);
 }
 v1.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);
 return v1.distanceTo(point);
 }
};

The box intersection test is a lot of code, so I won’t include it here.
We’ll go over all this in more detail in class, with some example problems.