CBC-MACs
MACs of variable length

Foundations of Cryptography
Computer Science Department
Wellesley College

Fall 2016

Table of contents

Introduction

Constructing variable length MACs

CBC-Mac
Secure communication and message integrity

- Last time we discussed a paradigm for constructing secure message authentication codes based on pseudorandom functions.
- Unfortunately, the construction is only capable of dealing with fixed length messages and shorts ones at that.
- Here we how variable-length MACs can be constructed from fixed-length ones.

Breaking the code

Let $\Pi' = (\text{Gen}', \text{Mac}', \text{Vrfy}')$ be a secure fixed length MAC for messages of length n. In each of the following three extensions, break messages m into blocks m_1,\ldots,m_d of length n.

1. XOR all the the blocks together and authenticate the result, i.e., tag $t := \text{Mac}'_k(\oplus_i m_i)$.

2. Authenticate each block separately, i.e., compute $t_i = \text{Mac}'_k(m_i)$ and output $t = \langle t_1,\ldots,t_d \rangle$ as the tag.

3. Authenticate each block along with a sequence number, i.e.,
$t_i := \text{Mac}'_k(i\|m_i)$ and output $t = \langle t_1,\ldots,t_d \rangle$ as the tag.
4. The truncation attack can be thwarted by authenticating the message length along with each block.* In other words, we compute $t_i = \text{Mac}_k^\ell(i \parallel m_i)$ for all i, where ℓ denotes the message length.

5. We can prevent the mix-and-match attack by also including a random “message identifier” along with each block that prevents blocks from different messages from being combined.

*Authenticating the message length as a separate block is not a good idea.

Construction 4.7.

Let $\Pi' = (\text{Gen}', \text{Mac}', \text{Vrfy}')$ be a fixed length MAC for messages of length n. Define a variable-length MAC as follows:

- **Gen**: This is identical to Gen'.
- **Mac**: On input a key $k \in \{0, 1\}^n$ and a message $m \in \{0, 1\}^*$ of length $\ell < 2^{n/4}$, parse m into d blocks m_1, \ldots, m_d, each of length $n/4$. Next choose a random identifier $r \leftarrow \{0, 1\}^{n/4}$. For $i = 1, \ldots, d$, compute $t_i \leftarrow \text{Mac}_k^r(r \parallel \ell \parallel i \parallel m_i)$, where i and ℓ are uniquely encoded as strings of length $n/4$.
- **Vrfy**: On input a key $k \in \{0, 1\}^n$, a message $m \in \{0, 1\}^*$ of length $\ell < 2^{n/4}$, and a tag $t = \langle r, t_1, \ldots, t_d \rangle$, parse m into d blocks m_1, \ldots, m_d, each of length $n/4$. Output 1 if and only if $d' = d$ and $\text{Vrfy}_k^r(r \parallel \ell \parallel i \parallel m_i, t_i) = 1$ for $1 \leq i \leq d$.
Construction 4.7 produces a secure MAC if it starts with one

Theorem 4.8. If Π' is a secure fixed-length MAC for messages of length n, then Construction 4.7 is a MAC that is existentially unforgeable under an adaptive chosen-message attack.

Secure MACs: A reminder

The message authentication experiment $\text{Mac-forge}_{A,\Pi}(n)$:
1. A random key k is generated by running $\text{Gen}(1^n)$.
2. The adversary A is given input 1^n and oracle access to $\text{Mac}_k(\cdot)$. The adversary eventually outputs a pair (m, t). Let Q denote the set of all queries that A asked to its oracle.
3. The output of the experiment is defined to be 1 if and only if (1) $\text{Vrfy}(m, t) = 1$; and (2) $m \notin Q$.

Definition 4.2. A message authentication code $\Pi = (\text{Gen}, \text{Mac}, \text{Vrfy})$ is existentially unforgeable under an adaptive chosen-message attack if for all probabilistic polynomial-time adversaries A there exists a negligible function negl such that

$$\Pr[\text{Mac-forge}_{A,\Pi}(n) = 1] \leq \text{negl}(n).$$
Back to the proof of Theorem 4.8

Theorem 4.8. If Π' is a secure fixed-length MAC for messages of length n, then Construction 4.7 is a MAC that is existentially unforgeable under an adaptive chosen-message attack.

Proof. Let Π denote the MAC given by Construction 4.7. Let \mathcal{A} be a PPT adversary. We will show that $\Pr[\text{Mac-forg}}, \Pi(n) = 1]$ is negligible.

Let Repeat denote the event that the same message identifier appears in two of the tags returned by the MAC oracle in experiment $\text{Mac-forg}, \Pi(n)$.

If $(m, t = (r, t_1, \ldots))$ denotes the final output of \mathcal{A} and ℓ denotes the length of m, let NewBlock denote the event that at least one of the blocks $r || \ell || i || m_i$ was never previously authenticated by the MAC oracle.

Bounding the probability of a forgery

We have

$$
\Pr[\text{Mac-forg}}, \Pi, n(n) = 1] = \Pr[\text{Mac-forg}}, \Pi, n(n) = 1 \land \text{Repeat}] + \Pr[\text{Mac-forg}}, \Pi, n(n) = 1 \land \overline{\text{Repeat}} \land \text{NewBlock}] + \Pr[\text{Mac-forg}}, \Pi, n(n) = 1 \land \overline{\text{Repeat}} \land \overline{\text{NewBlock}}]
$$

We show that the first two terms are negligible, and the final term is 0. This implies $\Pr[\text{Mac-forg}}, \Pi, n(n) = 1]$ is negligible, as desired.
Claim 4.9. There is a negligible function negl with
\Pr[\text{Repeat}] \leq \text{negl}(n).

Proof of Claim. Let \(q(n) \) be the (polynomial) number of MAC
oracle queries made by \(A \). To answer the \(i \)th oracle query, the
oracle chooses \(r_i \leftarrow \{0, 1\}^{n/4} \) uniformly at random. The probability
of event Repeat is exactly the probability that \(r_i = r_j \) for some
\(i \neq j \). This is the old "birthday bound*.”

*And what, pray tell, is that?

The birthday problem

How many students do we need
in a class before the probability is
greater than 1/2 that two
students have the same birthday?

Lemma A.16. Fix a positive
integer \(N \), and say \(q \leq \sqrt{2N} \)
elements \(y_1, \ldots, y_q \) are chosen
uniformly and independently at
random from a set of size \(N \).
Then the probability that there
exists distinct \(i, j \) with \(y_i = y_j \) is
at least \(\frac{q(q-1)}{4N} \).

For the birthday problem,
\(N = 365 \), we find the smallest \(q \)
such that the probability of
collision exceeds 1/2.
Here we are interested in an upper bound.

Lemma A.15. Let y_1, \ldots, y_q be q elements chosen uniformly at random from a set of size N. The probability that there exists distinct i,j with $y_i = y_j$ is at most $q^2 / 2N$.

Proof. Let $Coll$ denote the event of a collision, and let $Coll_{i,j}$ denote the event that $y_i = y_j$. Certainly $Pr[Coll_{i,j}] = 1/N$ for $i \neq j$. Since $Coll = \bigvee_{i\neq j} Coll_{i,j}$, the union bound implies

$$Pr[Coll] = Pr\left[\bigvee_{i\neq j} Coll_{i,j}\right] \leq \sum_{i\neq j} Pr[Coll_{i,j}] = \left(\frac{q}{2}\right) \cdot \frac{1}{N} \leq \frac{q^2}{2N}.$$

Back to the first claim.

Claim 4.9. There is a negligible function negl with $Pr[Repeat] \leq \text{negl}(n)$.

Proof of Claim. Let $q(n)$ be the (polynomial) number of MAC oracle queries made by A. To answer the ith oracle query, the oracle chooses $r_i \leftarrow \{0,1\}^{n/4}$ uniformly at random. The probability of event $Repeat$ is exactly the probability that $r_i = r_j$ for some $i \neq j$. By Lemma A.15, we have $Pr[Repeat] \leq \frac{q(n)^2}{2^{2n/4}}$. *

*Here we are using the fact that identifiers are chosen from a set of size $|\{0,1\}^{n/4}| = 2^{n/4}$.}
On to the next party

Claim. \(\Pr[\text{Mac-forg}_{A, \pi}(n) = 1 \land \text{Repeat} \land \text{NewBlock}] = 0. \)

Proof. Let \(q = q(n) \) denote the number of queries made by \(A \) and \(r_i \) denote the random identifier used to answer the \(i \)th query. If Repeat does not occur, the the values \(r_1, \ldots, r_q \) are all distinct.

Let \((m, (r, t_1, \ldots, t_d)) \) be the output of \(A \), with \(m = m_1, \ldots \). If \(r \notin \{r_1, \ldots, r_q\} \), then NewBlock clearly occurs.

If not, then \(r = r_j \) for some unique \(j \), and the blocks \(r \| \ell \| 1 \| m_1, \ldots \) could not have been authenticated during the course of answering any query other than the \(j \)th. Let \(m^{(j)} \) be the message used by \(A \) for its \(j \)th query, and let \(\ell_j \) be its length.

There are two cases to consider.

The two cases

Case 1: \(\ell \neq \ell_j \). The blocks authenticated when answering the \(j \)th query all have \(\ell_j \neq \ell \) in the second position. So \(r\|\ell\|1\|m_1 \) was never authenticated in the course of answering the \(j \)th query, and NewBlock occurs.

Case 2: \(\ell = \ell_j \). If \(\text{Mac-forg}_{A, \pi}(n) = 1 \), then we must have \(m \neq m^{(j)} \). Let \(m^{(j)} = m_1^{(j)}, \ldots \). Since \(m \) and \(m^{(j)} \) have equal length, there must be at least one index \(i \) for which \(m_i \neq m_i^{(j)} \). the block \(r \| \ell \| i \| m_i \) was then never authenticated in the course of answering the \(j \)th query.
Finally we show

Claim 4.10. \(\Pr[\text{Mac-forg}\mathcal{E}_A,n(n) = 1 \land \text{NewBlock}] = 0. \)

The claim relies on the security of \(\Pi' \). We construct an adversary \(\mathcal{A}' \) who attacks the fixed-length MAC \(\Pi' \) and succeeds with probability

\[
\Pr[\text{Mac-forg}_{\mathcal{A}',\Pi'}(n) = 1] \geq \Pr[\text{Mac-forg}_{\mathcal{A},\Pi}(n) = 1 \land \text{NewBlock}]
\]

Security of \(\Pi' \) implies that the left-hand side is negligible, proving the claim.

A PPT adversary \(\mathcal{A}' \) attacking \(\Pi' \)

Adversary \(\mathcal{A}' \):

1. \(\mathcal{A}' \) runs \(\mathcal{A} \) as a sub-routine, and answers the request by \(\mathcal{A} \)'s for a MAC tag on message \(m \) by choosing \(r \leftarrow \{0, 1\}^{n/4} \), parsing \(m \) appropriately, and making the appropriate queries to its own MAC oracle.

2. When \(\mathcal{A} \) outputs \((m, t) \), with \(|m| = \ell \), \(\mathcal{A}' \) parses \(m \) as \(m_1, \ldots, m_d \) and \(t \) as \(\langle r, t_1, \ldots, t_d \rangle \) and checks for a previously-unauthenticated block \(r \| \ell \| i \| m_i, i.e, \text{NewBlock occurs. If such a block exists, } \mathcal{A}' \) outputs \((r \| \ell \| i \| m_i, t_i) \). If not, \(\mathcal{A}' \) outputs nothing.

The view of \(\mathcal{A} \) when run as a sub-routine of \(\mathcal{A}' \) is distributed identically to the view of \(\mathcal{A} \) in \(\text{Mac-forg}_{\mathcal{A},\Pi}(n) \). If Newblock occurs then \(\mathcal{A}' \) outputs a block \((r \| \ell \| i \| m_i, t_i) \) that was never previously authenticated; if \(\text{Mac-forg}_{\mathcal{A},\Pi}(n) = 1 \) then the tag on every block is valid, and \(\text{Mac-forg}_{\mathcal{A}',\Pi'}(n) = 1 \).
CBC-Mac

- The previous construct works, but is rather inefficient: to compute a MAC tag on a message of length $\ell \cdot n$ requires 4ℓ application of the block cipher, and the MAC tag is $(4\ell + 1)n$ bits long.

- There is a better way: CBC-MAC construction is similar to CBC mode encryption and only requires ℓ applications of the block cipher producing a tag of length n bits long.

CBC-MAC for fixed-length messages

Construction 4.11.

Let F be a pseudorandom function, and fix a length function ℓ. The basic CBC-MAC construction is as follows.

- **Gen:** On input 1^n, choose $k \leftarrow \{0, 1\}^n$ uniformly at random.

- **Mac:** On input a key $k \in \{0, 1\}^n$ and a message $m \in \{0, 1\}^*$ of length $\ell(n) \cdot n$, do the following:
 1. Parse m as m_1, \ldots, m_ℓ, where each m_i is of length n.
 2. Set $t_0 := 0^n$. For $i = 1$ to ℓ:
 - Set $t_i := F_k(t_{i-1} \oplus m_i)$.

Output t_ℓ as the tag.

- **Vrfy:** On input a key $k \in \{0, 1\}^n$, message $m \in \{0, 1\}^*$ of length $\ell(n) \cdot n$, and a tag t of length n, output 1 if and only if $t = \text{Mac}_k(m)$.
Introduction

Constructing variable length MACs

CBC-Mac

Security of CBC-MAC for fixed-length messages*

Theorem 4.12. Let \(\ell \) be a polynomial. If \(F \) is a pseudorandom function, then Construction 4.11 is a fixed-length MAC for messages of length \(\ell(n) \cdot n \) that is existentially unforgeable under an adaptive chosen-message attack.

*If an adversary is able to obtain MAC tags for messages of varying lengths, then the scheme is not longer secure.

Modification of CBC-MAC for fixed-length messages

1. CBC-mode encryption uses a *random IV* and this turned out to be crucial for its security. In contrast, CBC-MAC uses no IV, and this is also crucial for obtaining security.

2. In CBC-mode encryption all blocks \(t_i \) are output, whereas in CBC-MAC only the final block is output. Why not output all the blocks?
Secure CBC-MAC for variable-length messages

1. Prepend the message with its length $|m|$ and then compute the basic CBC-MAC on the resulting message.

2. Change the scheme so that key generation chooses two different keys $k_1 \leftarrow \{0,1\}^n$ and $k_2 \leftarrow \{0,1\}^n$. Then to authenticate a message m first compute the basic CBC-MAC of m using k_1 and let t be the result; output the tag $\hat{t} := F_{k_2}(t)$.