CBC-MACs $MACs\ of\ variable\ length$

Foundations of Cryptography Computer Science Department Wellesley College

Fall 2016

Introduction

CONSTRUCTING VARIABLE LENGTH MAC

CBC-MA

Table of contents

Introduction

 $Constructing\ variable\ length\ MACs$

CBC-Mac

Secure communication and message integrity

- Last time we discussed a paradigm for constructing secure message authentication codes based on pseudorandom functions.
- Unfortunately, the construction is only capable of dealing with fixed length messages and shorts ones at that.
- Here we how variable-length MACs can be constructed from fixed-length ones.

Introduction

CONSTRUCTING VARIABLE LENGTH MAC

CBC-MA

Breaking the code

Let $\Pi' = (\text{Gen}', \text{Mac}', \text{Vrfy}')$ be a secure fixed length MAC for messages of length n. In each of the following three extensions, break messages m into blocks m_1, \ldots, m_d of length n.

- 1. XOR all the the blocks together and authenticate the result, i.e., tag $t := \operatorname{Mac}'_k(\oplus_i m_i)$.
- 2. Authenticate each block separately, i.e., compute $t_i = \operatorname{Mac}_k'(m_i)$ and output $t = \langle t_1, \dots, t_d \rangle$ as the tag.
- 3. Authenticate each block along with a sequence number, i.e., $t_i := \operatorname{Mac}_k'(i || m_i)$ and output $t = \langle t_1, \dots, t_d \rangle$ as the tag.

Curses, foiled again

- 4. The truncation attack can be thwarted by authenticating the message length along with each block.* In other words, we compute $t_i = \operatorname{Mac}'_k(\ell \parallel i \parallel m_i)$ for all i, where ℓ denotes the message length.
- 5. We can prevent the mix-and-match attack by also including a random "message identifier" along with each block that prevents blocks from different messages from being combined.

*Authenticating the message length as a separate block is not a good idea.

Introduction

CONSTRUCTING VARIABLE LENGTH MACS

CBC-Mac

$Constructing\ variable ext{-length}\ message\ authentication \\ codes$

Construction 4.7.

Let $\Pi' = (Gen', Mac', Vrfy')$ be a fixed length MAC for messages of length n. Define a variable-length MAC as follows:

- Gen: This is identical to Gen'.
- Mac: On input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^*$ of length $\ell < 2^{\frac{n}{4}}$, parse m into d blocks m_1, \ldots, m_d , each of length n/4. Next choose a random identifier $r \leftarrow \{0,1\}^{n/4}$. For $i=1,\ldots,d$, compute $t_i \leftarrow \operatorname{Mac}_k'(r\|\ell\|i\|m_i)$, where i and ℓ are uniquely encoded as strings of length n/4.
- Vrfy: On input a key $k \in \{0,1\}^n$, a message $m \in \{0,1\}^*$ of length $\ell < 2^{\frac{n}{4}}$, and a tag $t = \langle r, t_1, \ldots, t_{d'} \rangle$, parse m into d blocks m_1, \ldots, m_d , each of length n/4. Output 1 if and only if d' = d and $\text{Vrfy}_k'(r||\ell||i||m_i, t_i) = 1$ for $1 \le i \le d$.

Construction 4.7 produces a secure MAC if it starts with one

Theorem 4.8. If Π' is a secure fixed-length MAC for messages of length n, then Construction 4.7 is a MAC that is existentially unforgeable under an adaptive chosen-message attack.

Introduction

Constructing variable length MACs

CBC-MA

Secure MACs: A reminder

The message authentication experiment Mac-forge_{A,Π}(n):

- 1. A random key k is generated by running $Gen(1^n)$.
- 2. The adversary \mathcal{A} is given input 1^n and oracle access to $\operatorname{Mac}_k(\cdot)$. The adversary eventually outputs a pair (m,t). Let \mathcal{Q} denote the set of all queries that \mathcal{A} asked to its oracle.
- 3. The output of the experiment is defined to be 1 if and only if (1) Vrfy(m, t) = 1; and (2) $m \notin Q$.

Definition 4.2. A message authentication code $\Pi = (\text{Gen}, \text{Mac}, \text{Vrfy})$ is existentially unforgeable under an adaptive chosen-message attack if for all probabilistic polynomial-time adversaries \mathcal{A} there exists a negligible function negl such that

$$\Pr[\mathsf{Mac ext{-}forge}_{\mathcal{A},\Pi}(n)=1] \leq \mathsf{negl}(n).$$

Back to the proof of Theorem 4.8

Theorem 4.8. If Π' is a secure fixed-length MAC for messages of length n, then Construction 4.7 is a MAC that is existentially unforgeable under an adaptive chosen-message attack. Proof. Let Π denote the MAC given by Construction 4.7. Let $\mathcal A$ be a PPT adversary. We will show that $\Pr[\mathsf{Mac}\text{-forge}_{\mathcal A,\Pi}(n)=1]$ is negligible.

Let Repeat denote the event that the same message identifier appears in two of the tags returned by the MAC oracle in experiment Mac-forge_{A,Π}(n).

If $(m, t = \langle r, t_1, \ldots \rangle)$ denotes the final output of \mathcal{A} and ℓ denotes the length of m, let NewBlock denote the event that at least one of the blocks $r||\ell||i||m_i$ was never previously authenticated by the MAC oracle.

Introduction

CONSTRUCTING VARIABLE LENGTH MACS

CBC-MAC

Bounding the probability of a forgery

We have

$$\begin{split} \Pr[\mathsf{Mac\text{-}forge}_{\mathcal{A},\Pi}(n) = 1] &= & \Pr[\mathsf{Mac\text{-}forge}_{\mathcal{A},\Pi}(n) = 1 \land \mathsf{Repeat}] \\ &+ \Pr[\mathsf{Mac\text{-}forge}_{\mathcal{A},\Pi}(n) = 1 \land \overline{\mathsf{Repeat}} \land \mathsf{NewBlock}] \\ &+ \Pr[\mathsf{Mac\text{-}forge}_{\mathcal{A},\Pi}(n) = 1 \land \overline{\mathsf{Repeat}} \land \overline{\mathsf{NewBlock}}] \\ &\leq & \Pr[\mathsf{Repeat}] \\ &+ \Pr[\mathsf{Mac\text{-}forge}_{\mathcal{A},\Pi}(n) = 1 \land \mathsf{NewBlock}] \\ &+ \Pr[\mathsf{Mac\text{-}forge}_{\mathcal{A},\Pi}(n) = 1 \land \overline{\mathsf{Repeat}} \land \overline{\mathsf{NewBlock}}]. \end{split}$$

We show that the first two terms are negligible, and the final term is 0. This implies $\Pr[\mathsf{Mac}\text{-}\mathsf{forge}_{\mathcal{A},\Pi}(n)=1]$ is negligible, as desired.

First claim

Claim 4.9. There is a negligible function negl with $Pr[Repeat] \leq negl(n)$.

Proof of Claim. Let q(n) be the (polynomial) number of MAC oracle queries made by \mathcal{A} . To answer the ith oracle query, the oracle chooses $r_i \leftarrow \{0,1\}^{n/4}$ uniformly at random. The probability of event Repeat is exactly the probability that $r_i = r_j$ for some $i \neq j$. This is the old "birthday bound*."

*And what, pray tell, is that?

Introduction

Constructing variable length MACs

CBC-MAC

The birthday problem

How many students do we need in a class before the probability is greater than 1/2 that two students have the same birthday?

Lemma A.16. Fix a positive integer N, and say $q \leq \sqrt{2N}$ elements y_1, \ldots, y_q are chosen uniformly and independently at random from a set of size N. Then the probability that there exists distinct i,j with $y_i = y_j$ is at least $\frac{q(q-1)}{4N}$.

For the birthday problem, N=365, we find the smallest q such that the probability of collision exceeds 1/2.

Here we are interested an upper bound

Lemma A.15. Let y_1, \ldots, y_q be q elements chosen uniformly at random from a set of size N. The probability that there exists distinct i, j with $y_i = y_j$ is at most $\frac{q^2}{2N}$.

Proof. Let Coll denote the event of a collision, and let $Coll_{i,j}$ denote the event that $y_i = y_j$. Certainly $Pr[Coll_{i,j}] = 1/N$ for $i \neq j$. Since $Coll = \bigvee_{i \neq j} Coll_{i,j}$, the union bound implies

$$\Pr[\mathsf{Coll}] = \Pr\left[\bigvee_{i \neq j} \mathsf{Coll}_{i,j}\right] \\
\leq \sum_{i \neq j} \Pr[\mathsf{Coll}_{i,j}] \\
= \binom{q}{2} \cdot \frac{1}{N} \leq \frac{q^2}{2N}.$$

4□ ► 4□ ► 4□ ► 4□ ► 900

Introduction

Constructing variable length MACs

CBC-MA

Back to the first claim

Claim 4.9. There is a negligible function negl with $Pr[Repeat] \leq negl(n)$.

Proof of Claim. Let q(n) be the (polynomial) number of MAC oracle queries made by \mathcal{A} . To answer the ith oracle query, the oracle chooses $r_i \leftarrow \{0,1\}^{n/4}$ uniformly at random. The probability of event Repeat is exactly the probability that $r_i = r_j$ for some $i \neq j$. By Lemma A.15, we have $\Pr[\mathsf{Repeat}] \leq \frac{q(n)^2}{2 \cdot 2^{n/4}}$.*

^{*}Here we are using the fact that identifiers are chosen from a set of size $|\{0,1\}^{n/4}|=2^{n/4}$.

On to the next party

Claim. $\Pr[\mathsf{Mac}\text{-}\mathsf{forge}_{\mathcal{A},\Pi}(n) = 1 \land \overline{\mathsf{Repeat}} \land \overline{\mathsf{NewBlock}}] = 0.$

Proof. Let q = q(n) denote the number of queries made by \mathcal{A} and r_i denote the random identifier used to answer the *i*th query. If Repeat does not occur, the the values r_1, \ldots, r_q are all distinct.

Let $(m, \langle r, t_1, \dots, t_d \rangle)$ be the output of \mathcal{A} , with $m = m_1, \dots$ If $r \notin \{r_1, \dots, r_q\}$, then NewBlock clearly occurs.

If not, then $r=r_j$ for some unique j, and the blocks $r\parallel\ell\parallel 1\parallel m_1,\ldots$ could not have been authenticated during the course of answering any query other than the jth. Let $m^{(j)}$ be the message used by $\mathcal A$ for its jth query, and let ℓ_j be its length.

There are two cases to consider.

Introduction

CONSTRUCTING VARIABLE LENGTH MACS

CBC-MA

The two cases

Case 1: $\ell \neq \ell_j$. The blocks authenticated when answering the jth query all have $\ell_j \neq \ell$ in the second position. So $r||\ell||1||m_1$ wsa never authenticated in the course of answering the jth query, and NewBlock occurs.

Case 2: $\ell = \ell_j$. If Mac-forge_{\mathcal{A},Π}(n) = 1, then we must have $m \neq m^{(j)}$. Let $m^{(j)} = m_1^{(j)}, \ldots$. Since m and $m^{(j)}$ have equal length, there must be at least one index i for which $m_i \neq m_i^{(j)}$. the block $r \parallel \ell \parallel i \parallel m_i$ was then never authenticated in the course of answering the jth query.

Finally we show

Claim 4.10.
$$Pr[Mac-forge_{A,\Pi}(n) = 1 \land NewBlock] = 0.$$

The claim relies on the security of Π' . We construct an adversary \mathcal{A}' who attacks the fixed-length MAC Π' and succeeds with probability

$$\mathsf{Pr}[\mathsf{Mac ext{-}forge}_{\mathcal{A}',\Pi'}(n) = 1 \geq \mathsf{Pr}[\mathsf{Mac ext{-}forge}_{\mathcal{A},\Pi}(n) = 1 \land \mathsf{NewBlock}]$$

Security of Π' implies that the left-hand side is negligible, proving the claim.

Introduction

CONSTRUCTING VARIABLE LENGTH MACS

CBC-MAC

A PPT adversary \mathcal{A}' attacking Π'

Adversary A':

- 1. \mathcal{A}' runs \mathcal{A} as a sub-routine, and answers the request by \mathcal{A} 's for a MAC tag on message m by choosing $r \leftarrow \{0,1\}^{n/4}$, parsing m appropriately, and making the appropriate queries to its own MAC oracle.
- 2. When \mathcal{A} outputs (m,t), with $|m|=\ell$, \mathcal{A}' parses m as m_1,\ldots,m_d and t as $\langle r,t_1,\ldots,t_d\rangle$ and checks for a previously-unauthenticiated block $r\|\ell\|i\|m_i$, i.e, NewBlock occurs. If such a block exists, \mathcal{A}' outputs $(r\|\ell\|i\|m_i,t_i)$. If not, \mathcal{A}' outputs nothing.

The view of \mathcal{A} when run as a sub-routine of \mathcal{A}' is distributed identically to the view of \mathcal{A} in $\operatorname{Mac-forge}_{\mathcal{A},\Pi}(n)$. If Newblock occurs then \mathcal{A}' outputs a block $(r\|\ell\|i\|m_i,t_i)$ that was never previously authenticated; if $\operatorname{Mac-forge}_{\mathcal{A},\Pi}(n)=1$ then the tag on every block is valid, and $\operatorname{Mac-forge}_{\mathcal{A}',\Pi'}(n)=1$.

CBC-Mac

- The previous construct works, but is rather inefficient: to compute a MAC tag on a message of length $\ell \cdot n$ requires 4ℓ application of the block cipher, and the MAC tag is $(4\ell+1)n$ bits long.
- There is a better way: CBC-MAC construction is similar to CBC mode encryption and only requires ℓ applications of the block cipher producing a tag of length n bits long.

Introduction

CONSTRUCTING VARIABLE LENGTH MAC

 $\mathrm{CBC\text{-}Mac}$

CBC-MAC for fixed-length messages

Construction 4.11.

Let F be a pseudorandom function, and fix a length function ℓ . The basic CBC-MAC construction is as follows.

- Gen: On input 1^n , choose $k \leftarrow \{0,1\}^n$ uniformly at random.
- Mac: On input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^*$ of length $\ell(n) \cdot n$, do the following:
 - 1. Parse m as m_1, \ldots, m_ℓ , where each m_i is of length n.
 - 2. Set $t_0 := 0^n$. For i = 1 to ℓ : Set $t_i := F_k(t_{i-1} \oplus m_i)$.

Output t_{ℓ} as the tag.

• Vrfy: On input a key $k \in \{0,1\}^n$, message $m \in \{0,1\}^*$ of length $\ell(n) \cdot n$, and a tag t of length n, output 1 if and only if $t \stackrel{?}{=} \mathsf{Mac}_k(m)$.

Security of CBC-MAC for fixed-length messages*

Theorem 4.12. Let ℓ be a polynomial. If F is a pseudorandom function, then Construction 4.11 is a fixed-length MAC for messages of length $\ell(n) \cdot n$ that is existentially unforgeable under an adaptive chosen-message attack.

*If an adversary is able to obtain MAC tags for messages of varying lengths, then the scheme is not longer secure.

Introduction

CONSTRUCTING VARIABLE LENGTH MAC

CBC-Mac

Modification of CBC-MAC for fixed-length messages

- CBC-mode encryption uses a random IV and this turned out to be crucial for its security. In contrast, CBC-MAC uses no IV, and this is also crucial for obtaining security.
- 2. In CBC-mode encryption all blocks t_i are output, whereas in CBC-MAC only the final block is output. Why not output all the blocks?

Secure CBC-MAC for variable-length messages

- 1. Prepend the message with its length |m| and then compute the basic CBC-MAC on the resulting message.
- 2. Change the scheme so that key generation chooses two different keys $k_1 \leftarrow \{0,1\}^n$ and $k_2 \leftarrow \{0,1\}^n$. Then to authenticate a message m first compute the basic CBC-MAC of m using k_1 and let t be the result; output the tag $\hat{t} := F_{k_2}(t)$.

