
Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Fingerprints and Trees
Additional Applications for Hash Functions

Foundations of Cryptography
Computer Science Department

Wellesley College

Fall 2016

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Table of contents

Introduction

E�cient storage

Merkle trees

Password Hashing

Commitment Schemes

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Fingerprinting

• Virus scanners identify
viruses by storing a database
containing hashes of known
viruses.

• When an application or
email attachment is
downloaded, the scanner
looks up the its hash in this
database.

• Overhead is feasible since
only a very short string
needs to be recorded
(and/or distributed) for each
virus.

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Deduplication

• When multiple users store
the same file in the cloud,
only one copy is needed.

• Duplication is avoided by
having the user first upload
a hash of the file they want
to store.

• If the hash is already in the
cloud, the cloud-storage
provider simply adds a
pointer to the existing file to
indicate the this specific
user also stored the file.

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Distributed databases

• Consider building a database
distributed over a large
number of peers that
support indexing and
searching.

• Peers query the database by
supplying a key and is given
in return the pair (key,
value) that matches the key.

• Peers may also insert (key,
value) pairs into the
database. How best to do
this?

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

My brother’s approach

1. Randomly scatter the (key,
value) pairs across the peers
and ...

2. ... have each peer maintain
a list of the IP addresses of
all participating peers.

3. The querying peer looks into
every bag, box, and drawer.

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Distributed hash table

• Assign a unique integer
identifier in the range
[0, 2n � 1] for some fixed n
to each peer.

• Using a publicly available
hash function, assign
integers in the same range
to each key.

• Assign each (key, value) to
the peer whose identifier is
“closest*” to the hashed key.

*Say, the immediate successor of the key.

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

For example, ...

• Suppose n = 4, so keys are
in the range [0, 24 � 1] and
there are currently eight
peers: 1, 3, 4, 5, 8, 10, 12, 15.

• Where should the pair
(11,Topper) go and how
does Alice find it?

• Suppose Alice wants to
insert (key , value) into the
DHT. How does she
determine the peer closest
to key?*

*Well, she could keep track of all the peers in the system?

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Circular distributed hash tables

• Peers are organized in a
circle. Each peer keeps track
of its immediate predecessor
and successor modulo 2n.

• Peer 3 finds the record with
key 11 by first passing a
message to peer 4, who ...

• When the message reaches
the responsible party, direct
communication takes place.

*These are not physical links, the peers form an abstract overlay network above

the“underlay” computer network.

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Adding shortcuts

• Circular DHT is an elegant solution for reducing overlay
information, but comes at a cost.

• An improvement is to add shortcuts, but there is a trade-o↵ between
the number of neighbors each peer has to track and the number of
message that the DHT needs to send to resolve a single query.

• When a peer receives a message that is querying for a key, it
forwards the message to the neighbor which is closest the key.

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Fingerprinting files

• A client retrieves her
previously uploaded file, x ,
from the cloud and wants to
make sure it has not been
altered in the meantime.

• She could maintain a copy
and compare.*

• An obvious solution is to use
the “fingerprinting”
technique to store a short
digest h := H(x) and check

that H(x 0)
?

= h for the
returned file, x 0

*But that would defeat the purpose of the cloud.

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

What happens when there are multiple files?

• We could simple hash each
file, x

1

, . . . , xt independently,
store the digests h

1

, . . . , ht ,
then verify retrieved files as
before.*

• Alternative, we could hash
that lot, h := H(x

1

, . . . , xt
and store only h**.

• Merkle trees give a tradeo↵
between these two extremes.

*But then client’s storage grows linearly in t.

**But there’s a downside here too.

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Merkle trees

A Merkle tree computed over inputs x
1

, . . . , xt is a binary tree of depth
log

2

t whose leaves are the inputs, and each internal node is the hash of
the values of its two children.

Theorem 5.11. Let (sf GenH ,H) be a collision resistant, then

(sf GenH ,MT t)) is also collision resistant for any fixed t, where MT t

denotes the function that takes t input values x
1

, . . . , xt , computes the

resulting Merkle tree, and outputs its root value.

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

A solution to our problem using O(log2 t)
communication

• The client computes h := MT t(x1, . . . , xt), uploads files x1, . . . , xt
to the server, and stores h and t.

• At retrieval time, the server sends xi along with a proof ⇡i of
correctness consisting of the values of nodes in the Merkle tree
adjacent to the path from xi to the root.

• The client uses these to recompute the path from xi to the root and
verify that it equals h.

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Password Hashing

• When a user types her password
before she can use her laptop.

• To authenticate the user, some
form of the user’s password must
be stored on the laptop. If stored
in the clear, an adversary who
steals the laptop can read the
user’s password o↵ the hard drive
and login as her.

• This risk can be mitigated by
storing a hash, hpw = H(pw), of
the password instead. When a user
enters pw, the operating system

checks whether H(pk)
?

= hpw
before granting access.

*Our Linux system does just that. Hashes used to be stored openly in

/etc/passwd, but o↵-line attacks made that a very bad idea.

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Attempts to bound the attacker’s chances

• Suppose the password is chosen
from a relatively small space D,
for example words from an
English dictionary
(|D| ⇡ 80, 000).

• An attacker can then enumerate
all possible passwords
pw

1

, pw
2

, . . . 2 D and check
whether H(pwi) = hpw .

• We would like to claim this is
the best they can do.

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Randon oracle model to the rescue

• If H is modeled as a random oracle,
we can formally prove that
recovering pw from hpw requires
|D|/2 evaluations on H, on
average*.

• However, preprocessing can be
used to generate large tables that
enable inversion faster than
exhaustive search.

• Even if passwords rare chosen as a
random combination of 8
alphanumeric characters (giving a
password space of size
N = 628 ⇡ 247.6, there is an attack
using time and space N2/3 that will
be highly e↵ective.

*Assuming pw is chosen uniformly from D.

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Mitigating the threat of password cracking

• We could use “slow” hash
functions or slow existing ones
down using multiple iterations
by computing H(I)(pw) for
large I .

• Alternatively, we could
introduce salt.

• When a user enters their
password, a long random value
s is generated unique to the
user and value
(s, hpw) = H(r , pw) stored
instead of H(pw).

*Of course this comes at a cost to legitimate users.

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Commitment schemes

A commitment scheme allows one
party to “commit” to a message m
by sending a commitment com such
that:

• Hiding: the commitment reveals
nothing about m.

• Binding: it is infeasible for the
committer to output a
commitment that can later be
“opened” as two di↵erent
message m,m0.

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Two experiments
The commitment hiding experiment HidingA,Com(n):

1. Parameters params Gen(1n) are generated.

2. The adversary A is given input params, and outputs a pair of
message m

0

,m
1

2 {0, 1}n.
3. A uniform b {0, 1} is chosen and com Com(params,mb; r) is

computed.

4. The adversary A is given com and outputs a bit b0.

5. The output of the experiment is 1 if and only if b0 = b.

The commitment binding experiment BindingA,Com(n):

1. Parameters params Gen(1n) are generated.

2. The adversary A is given input params, and outputs
(com,m, r ,m0, r 0)

3. The output of the experiment is 1 if and only if m 6= m0 and
Com(params),m; r) = com = Com(params),m0; r 0).

Introduction Efficient storage Merkle trees Password Hashing Commitment Schemes

Secure commitment schemes

Definition 5.13. A commitment scheme is secure if for all PPT
adversaries A there is a negligible function negl such that

Pr[HidingA,Com(n) = 1]  1

2
+ negl(n)

and
Pr[BindingA,Com(n) = 1]  negl(n).

Remark. It is possible to construct a secure commitment scheme
from a random oracle H. How?

Remark. Commitment schemes can be constructed without
random oracles using one-way functions. But that is story for
another day.

