New Kid on the Block
Practical Construction of Block Ciphers

Foundations of Cryptography
Computer Science Department
Wellesley College

Fall 2016

Table of contents

Introduction

Substitution-permutation networks

Feistel Networks

The Data Encryption Standard
Block ciphers

- Recall that block cipher is an efficient, keyed permutation $F : \{0, 1\}^n \times \{0, 1\}^\ell \to \{0, 1\}^\ell$.
- That is, $F_k(x) \overset{\text{def}}{=} F(k, x)$ is a bijection and both it and its inversion F_k^{-1} are efficiently computable for all k.
- Here n is the key length and ℓ is block length.

*Both the key and block lengths are constant, so we are living in the world of concrete rather than asymptotic security.

Security requirements for block ciphers

Remark. Concrete security requirements are quite stringent. A block cipher is generally considered “good” if the best known attack (without preprocessing) has time complexity equivalent to a brute-force attack for the key. Recall

Definition 3.28. Let $F : \{0, 1\}^* \times \{0, 1\}^* \to \{0, 1\}^*$ an efficient keyed permutation. We say that F is a strong pseudorandom permutation if for all probabilistic polynomial-time distinguishers D, there exists a negligible function negl such that:

$$\left| \Pr[D^{F_k(\cdot), F_k^{-1}(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot), f^{-1}(\cdot)}(1^n) = 1] \right| \leq \text{negl}(n),$$

where $k \leftarrow \{0, 1\}^n$ is chosen uniformly at random and f is chosen uniformly at random from the set of permutations mapping n-bit strings to n-bit strings.

Remark. Block ciphers are designed (at the very least) to behave as (strong) pseudorandom permutations.
Twin goals of modern encryption

- **Confusion**: Make the statical relationship between the ciphertext and the key value as complex as possible.
- **Diffusion**: Dissipate the statistical structure of the plaintext throughout the ciphertext.

- A **Substitution-Permutation Network SPN** attempts both; substitution for confusion and permutation for diffusion.

Both ideas and promotion of substitution-permutation networks are due to Claude Shannon.

A single round of a substitution-permutation network

- We fix a public “substitution function” S called an **S-box**, and let the key k define the function $f(x) = S(k \oplus x)$.
- For example, suppose SPN has a 64-bit clock length based on a collection of 8-bit S-boxes, S_1, \ldots, S_8:
 1. **Key mixing**: Set $x := x \oplus k$.
 2. **Substitution**: Set $x := S_1(x_1) \parallel \ldots \parallel S_8(x_8)$, where x_i is the ith byte of x.
 3. **Permutation**: Permute the bits of x to obtain the output of round.
The full substitution-permutation network

- The output of each round is fed as input to the next round.
- After the last round there is a final key-mixing step \((x := x \oplus k)\).*
- Different round keys are used in each round which are derived from the actual or master key according to a key schedule.

*Since we assume the S-boxes and the mixing permutations are public, without this final key-mixing the last substitution and permutations steps would be useless.

Substitution-permutation networks are invertible

Proposition 6.3 Let \(F \) be a keyed function defined by an SPN in which the S-boxes are all permutations. Then regardless of the key schedule and number of rounds, \(F_k \) is a permutation for any \(k \).

Proof. We show that given the output of the SPN and the key, it is possible to invert any single round. The mixing permutation is clearly invertible and all the S-box are permutations, so these too can be inverted. The result is then XORed with the appropriate sub-key to obtain the input.

\[\square \]
The avalanche effect

The avalanche effect: A small change in either the plaintext or the key produces a significant change in the ciphertext.

One way to induce the avalanche effect in a SPN is to ensure:

1. The S-boxes are designed so that changing a single input bit changes at least **two bits** in the output.
2. The mixing permutations are designed so that the output bits an any S-box are used as input to **multiple** S-boxes in the next round.

<table>
<thead>
<tr>
<th>Round</th>
<th>Number of bits that differ</th>
<th>Number of bits that differ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>39</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>31</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>29</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>42</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>29</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>34</td>
<td>16</td>
</tr>
</tbody>
</table>

(a) Two plaintexts differ by one bit (all zeros and a one followed by 63 zeros.)
(b) The two keys also differ by just one bit.

How this works in practice

- Suppose 8-bit S-boxes and the mixing permutations are chosen as above for a 128-bit block size SPN.
- Now consider two inputs that differ by a single bit.
• In the early 1970s, Horst Feistel developed a sequence of fixed transpositions and key-dependent, multipartite non-linear substitutions (*LUCIFER*) that produced a thorough amalgamation.

• In this simplified illustration of LUCIFER we see a plain text input of a single 1 and fourteen 0s transformed by the non-linear S-boxes into an avalanche of eleven 1s.

• Feistel was successful enough to upset the NSA.

Attacking a one-round substitution-permutation network

• Suppose the SPN F consists of a single full round and no final key-mixing.

• An adversary can easily learn the secret key k given only a single input/output pair $(x, y = F_k(y))$. How?
Attacking a one-round substitution-permutation network with key-mixing

The attacker fixes a pair, \((x, y)\) could simple try all 64-bit possibilities for second-round mixing key, \(k_2\), then use above attack to construct \(2^{64}\) candidate keys \(k_1 \| k_2\). Additional pairs narrow the field. But the attacker can do better:

1. First enumerate over all possible first bytes of \(k_2\).
2. Then XOR each with of these with the first byte of \(y\) to obtain candidates for the outputs of the first \(S\)-box.
3. Backing each of these up through the first \(S\)-box, the adversary has 256 candidates for the the first bit of \(x \oplus k_1\) and hence 256 candidates for the first byte of \(k_1\).

Feistel: An alternative to substitution-permutation networks

- A Feistel network gives a way to construct invertible functions from non-invertible components.
- The goal is a block cipher that has an “unstructured” behavior*. Requiring all components to be invertible inherently introduces structure.
- Like SPNs, Feistel networks operate in a series of rounds each with a keyed round function constructed from \(S\)-boxes and permutations.

*So it looks random.
Feistel round functions

- The ith round function, \hat{f}_i, takes as input a sub-key k_i and an $\ell/2$-bit string and outputs an $\ell/2$-bit string.

- A master key k determines a series of round keys k_i. The round function $f_i : \{0,1\}^{\ell/2} \rightarrow \{0,1\}^{\ell/2}$ is defined by $f_i(R) \overset{\text{def}}{=} \hat{f}_i(k_i, R)$.

- The output of the ith round (L_i, R_i) is

 $$L_i := R_{i-1} \text{ and } R_i := L_{i-1} \oplus f_i(R_{i-1}).$$

*So it looks random.

Feistel networks are invertible

Proposition 6.4. Let F be a keyed function defined by a Feistel network. Then regardless of the round functions $\{\hat{f}_i\}$ and the number of rounds, F_k is an efficiently invertible permutation for all k.

Proof. We need only show that each round is invertible if the $\{f_i\}$ are known.

Given (L_i, R_i), we first compute $R_{i-1} := L_i$. Then compute

$$L_{i-1} = R_i \oplus f_i R_i - 1).$$
The return of LUCIFER

- LUCIFER was redesigned as a 16-round Feistel network on 128-bit blocks and 128-bit keys and was submitted by IBM as a candidate for the Data Encryption Standard.

- It became DES after the National Security Agency reduced its block size to 64 bits and its key size to 56 bits* and was adopted as the Federal Information Processing Standard for the US in 1977.

- Believe it or not, it remains in wide use today in its triple-DES incarnation.

*Which means that it is now vulnerable to brute-force attacks.

The Data Encryption Standard

- DES is a 16-round Feistel network with a block length of 64 bits and a key length of 56 bits.

- The same function, \(\hat{f} \) called the DES mangler function, is used for all 16 rounds.

- It takes a 48-bit round key derived from the 56-bit master using a relatively simple key schedule.

- We give a high-level overview of the main components of DES. A homework exercise is available for those interested in more details.
The DES mangler function

- Computation of \(\hat{f}(k_i, R) \) with \(k_i \in \{0, 1\}^{48} \) and \(R \in \{0, 1\}^{32} \) begins by duplicating half the bits of \(R \) to obtain \(R' := E(R) \), \(E \) the \textit{expansion function}.

- The expanded \(R' \) is XORed with \(k \) and the resulting value is divided into 8 6-bit-blocks. Each block is passed through a different \(S \)-box.*

- Finally a mixing permutation is applied to the bits and it off to the next round.

*The \(S \)-boxes are publicly known, but unlike our previous SPNs, they are not invertible.

The eight \(S \)-boxes at the core of the mangler function were very carefully designed. Even slight modification would make DES more vulnerable to attack.

*The Feistel version of LUCIFER was susceptible to differential cryptanalysis; for about half the keys, the cipher could be broken with 236 chosen plaintexts and 236 time complexity. This is one of the reasons NSA redesigned them.
Time to worry: Security of DES

- After 30 years of intensive study, the best known practical attack on DES is exhaustive search.* However, a 56-bit key isn’t very big.

<table>
<thead>
<tr>
<th>Key Size (bits)</th>
<th>Number of Alternative Keys</th>
<th>Time required at 1 encryption/μs</th>
<th>Time required at 10^9 encryptions/μs</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>2^32 = 4.3 × 10^9</td>
<td>2^31 μs = 35.8 minutes</td>
<td>2.15 milliseconds</td>
</tr>
<tr>
<td>56</td>
<td>2^56 = 7.2 × 10^16</td>
<td>2^5 μs = 1142 years</td>
<td>10.01 hours</td>
</tr>
<tr>
<td>128</td>
<td>2^128 = 3.4 × 10^38</td>
<td>2^12 μs = 5.4 × 10^7 years</td>
<td>5.4 × 10^9 years</td>
</tr>
<tr>
<td>26 characters</td>
<td>2^6 = 4 × 10^26</td>
<td>2 × 10^10 μs = 6.4 × 10^2 years</td>
<td>6.4 × 10^9 years</td>
</tr>
</tbody>
</table>

- A second concern is the relatively short block length of DES. The proof of security for CTR mode (Theorem 3.32) show that even when a completely random function is used an attacker can break it with probability 2q^2/2^ℓ if it obtains q plaintext/ciphertext pairs.

*In your homework you get the chance to investigate some theoretical attack, but these require a large number of input/output pairs which would be difficult to obtain.

Double encryption

- Let F be a block cipher with an n-bit key length and $ℓ$-bit block length. Define a new block cipher with a key length of $2n$ by

$$F'_{k_1,k_2}(x) \overset{\text{def}}{=} F_{k_2}(F_{k_1}(x)).$$

- For the case where F is DES, we obtain a cipher F' call 2DES that takes a 112-bit key. Exhaustive search is now out of reach.
Meet in the middle attack

Say adversary is given a single input/output pair \((x, y)\), where
\[y = F_{k_1^*}^{\dagger}(x) = F_{k_2^*}^{\dagger}(F_{k_1^*}(x)) \]
for unknown \(k_1^*, k_2^*\).

1. For each \(k_1 \in \{0, 1\}^n\) compute
\[z := F_{k_1}(x) \]
and store \((z, k_1)\) in list \(L\).

2. For each \(k_2 \in \{0, 1\}^n\) compute
\[z := F_{k_2}^{-1}(x) \]
and store \((z, k_2)\) in list \(L'\).

3. Entries \((z_1, k_1) \in L\) and
\((z_2, k_2) \in L'\) are a match if \(z_1 = z_2\).

The attack takes \(O(n \cdot 2^n)\) time and requires space \(O((n + \ell) \cdot 2^n)\) space and finds pairs \((k_1, k_2)\) with
\[F_{k_1}(x) = F_{k_2}^{-1}(y). \]

Triple DES with two keys

- An obvious counter to the meet-in-the-middle attack is to use three stages of encryption with three different keys.

- As an alternative, Tuchman proposed a triple encryption using only two keys
\[y = F_{k_1}(F_{k_2}^{-1}(F_{k_1}(x))). \]

- Triple-DES’s relatively small block length and the fact that is slow since it requires 3 full block-cipher operations, led to its replacement by the Advanced Encryption Standard.