Cryptographic applications of number-theoretic assumptions
One-way functions

Foundations of Cryptography
Computer Science Department
Wellesley College

Fall 2016

Table of contents

Introduction

One-Way Functions

Hash functions
One-way functions and permutations

- **One-way function** are the minimal cryptographic primitive.
- They are both necessary and sufficient for all private-key construction seen to date.
- Informally, a function is **one-way** if it is easy to compute but hard to invert.

Formally

The inverting experiment $\text{Invert}_{A,f}(n)$:

1. Choose input $x \leftarrow \{0,1\}^n$. Compute $y := f(x)$.
2. A is given 1^n and y as input, and outputs x'.
3. The output of the experiment is defined to be 1 if and only if $f(x') = y$.

Definition 8.72. A function $f : \{0,1\}^* \rightarrow \{0,1\}^*$ is **one-way** if the following two conditions hold:

1. (Easy to compute:) There exists a polynomial-time algorithm that on input x outputs $f(x)$.
2. (Hard to invert:) For all probabilistic polynomial-time algorithms A there exists a negligible function negl such that

 $$\Pr[\text{Invert}_{A,f}(n) = 1] \leq \text{negl}(n).$$
Framework for a hard problem

Let Gen be a polynomial-time algorithm that, on input 1^n, outputs (N, p, q) where $N = pq$, and p and q are n-bit primes except with probability negligible in n.

The factoring experiment Factor$_{A,Gen}(n)$:

1. Run Gen(1^n) to obtain (N, p, q).
2. A is given N, and outputs $p', q' > 1$.
3. The output of the experiment is defined to be 1 if $p' \cdot q' = 1$, and 0 otherwise.

Definition 8.45. We say that factoring problem is hard relative to Gen if for all probabilistic polynomial-time algorithms A there exists a negligible function negl such that

$$\Pr[\text{Factor}_{A,Gen}(n) = 1] \leq \text{negl}(n).$$

One-way functions and permutations

- The factoring assumption is simply the assumption that there exists a Gen relative to which factoring is hard.
- So is factoring a candidate for a one-way function?
Constructing a candidate “one-way” function f_{Gen}

Algorithm 8.73.
Algorithm for computing f_{Gen}

Input: String x
Output: String N

```
compute \((N, p, q) := \text{Gen}(1^n; x)\)
// i.e., run Gen\((1^n)\) using $x$ as the random tape
return $N$
```

Since Gen runs in polynomial-time, there exists a polynomial p such that the number of random bits the algorithm uses on input 1^n is at most $p(n)$. For simplicity, we assumption Gen uses exactly $p(n)$ random bits and is strictly increasing.

One-way

Theorem 8.74 If the factoring problem is hard relative to Gen, then f_{Gen} is a one-way function.

Proof. Certainly f_{Gen} is polynomial-time to compute. We show that f_{Gen} is hard to invert.

Let \mathcal{A} be a PPT adversary. We show

$$\Pr[\text{Invert}_{\mathcal{A}, f}(n) = 1] \leq \text{negl}(n)$$

for some negligible function negl.
One-way

Consider the following adversary \mathcal{A}' against the factoring problem:

Adversary \mathcal{A}'

1. On input N, set $n' = p(n)$ and run \mathcal{A} on inputs $1^{n'}$ and N.
2. When \mathcal{A} returns x, run $\text{Gen}(1^{n'}; x)$ to obtain (N, p, q).
3. Return p, q.

Note that the view of \mathcal{A} when run as a subroutine of \mathcal{A}' is identical to the view of \mathcal{A} in the experiment $\text{Invert}_{\mathcal{A}, f}(n)$. Furthermore \mathcal{A}' factors N precisely when \mathcal{A} successfully inverts f_{Gen}. Thus,

$$\Pr[\text{Invert}_{\mathcal{A}, f}(n) = 1] = \Pr[\text{Factor}_{\mathcal{A}', \text{Gen}}(n) = 1] \leq \text{negl}(n)$$

for some negligible function negl since the factoring problem is hard relative to Gen.

Hash functions revisited

- Recall that *hash functions* take arbitrary-length strings and *compress* them into shorter strings.
- Also recall *hash collisions are bad*.
- Previously we presented heuristic constructions of collision-resistant hash-functions, but gave no proofs that the resulting hash functions were secure under more basic assumptions.*

*All that is about to change.
First a reminder: Collision experiments & resistance

The collision-finding experiment $\text{Hash-coll}_{A, \Pi}(n)$:

1. A key s is generated by running $\text{Gen}(1^n)$.
2. The adversary A is given s and outputs x, x'. (If Π is a fixed length hash function for inputs of length $\ell'(n)$ then we require $x, x' \in \{0, 1\}^{\ell'(n)}$.)
3. The output of the experiment is defined to be 1 if and only if $x \neq x'$ and $H^s(x) = H^s(x')$. In such a case we say that A has found a collision.

Definition 5.2. A hash function $\Pi = (\text{Gen}, H)$ is collision resistant if for all probabilistic polynomial-time adversaries A there exists a negligible function negl such that

$$\Pr[\text{Hash-coll}_{A, \Pi}(n) = 1] \leq \text{negl}(n).$$

Constructing collision-resistant hash functions

Construction 8.78
Let \mathcal{G} be a polynomial-time algorithm that on input 1^n outputs a cyclic group \mathbb{G} of prime order q (with $n = \|q\|$) and generator g. Define a fixed-length hash function (Gen, H) as follows:

- **Gen**: On input 1^n, run $\mathcal{G}(1^n)$ to obtain (\mathbb{G}, q, g) and then select $h \leftarrow \mathbb{G}$. Output $s := (\mathbb{G}, q, g, h)$.
- **H**: given a key $s = (\mathbb{G}, q, g, h)$ and input $(x_1, x_2) \in \mathbb{Z}_q \times \mathbb{Z}_q$, output $H^s(x_1, x_2) := g^{x_1} h^{x_2}$.
Collision-resistant

Theorem 8.79. If the discrete logarithm problem is hard relative to \(\mathcal{G} \), the Construction 8.78 is a fixed-length collision-resistant hash function.

Proof. Let \(\Pi = (\text{Gen}, H) \) as in Construction 8.78, and let \(\mathcal{A} \) be a PPT algorithm with

\[\epsilon \overset{\text{def}}{=} \Pr[\text{Hash-coll}_{\mathcal{A}, \Pi}(n) = 1] \]

We show how \(\mathcal{A} \) can be used by an algorithm \(\mathcal{A}' \) to solve the discrete logarithm problem with success probability \(\epsilon \).

Recall the discrete logarithm problem:

The discrete logarithm experiment \(\text{Dlog}_{\mathcal{A}, \mathcal{G}}(n) \):

1. Run \(\mathcal{G}(1^n) \) to obtain \((\mathcal{G}, q, g)\), where \(\mathcal{G} \) is a cyclic group of order \(q \) (with \(\lVert q \rVert = n \)), and \(g \) is a generator of \(\mathcal{G} \).
2. Choose \(h \leftarrow \mathcal{G} \). (This can be done by choosing \(x' \leftarrow \mathbb{Z}_q \) and set \(h := g^{x'} \)).
3. \(\mathcal{A} \) is given \(\mathcal{G}, q, g, h \), and outputs \(x \in \mathbb{Z}_q \).
4. The output of the experiment is defined to be 1, if \(g^x = h \), and 0 otherwise.

Definition 7.59 We say that the discrete logarithm problem is hard relative to \(\mathcal{G} \) if for all probabilistic polynomial-time algorithms \(\mathcal{A} \) there exists a negligible function \(\text{negl} \) such that

\[\Pr[\text{Dlog}_{\mathcal{A}, \mathcal{G}}(n) = 1] \leq \text{negl}(n). \]
Algorithm A':
The algorithm is given G, q, g, h as input.

1. Let $s := \langle G, q, g, h \rangle$. Run $A(s)$ and obtain output x and x'.
2. If $x \neq x'$ and $H^s(x) = H^s(x')$ then:
 2.1 If $h = 1$ return 0.
 2.2 Otherwise, parse x as (x_1, x_2) and parse x' as (x'_1, x'_2). Return $(x_1 - x'_1), (x_2 - x'_2)^{-1} \mod q$.

Clearly, A' runs in polynomial time. Furthermore, the input s given to A when run as a subroutine by A' is distributed exactly as in experiment Hash-coll$_{A, \Pi}$. So with probability precisely $\epsilon(n)$ there is a collision.

We claim that whenever there is a collision, A' returns the correct answer $\log_g h$.

If $h = 1$, then $\log_g h = 0$ which is previously what A' returns.

Otherwise, the collision implies

$$H^s(x_1, x_2) = H^s(x'_1, x'_2) \Rightarrow g^{x_1} h^{x_2} = g^{x'_1} h^{x'_2} \Rightarrow g^{x_1 - x'_1} = h^{x'_2 - x_2}.$$

If $x'_2 - x_2 = 0 \mod q$, then $g^{x_1 - x'_1} = h^{x'_2 - x_2} = h^0 = 1$ and $x_1 - x'_1 = 0 \mod q$. But then $x = (x_1, x_2) = (x'_1, x'_2) = x'$ in contradiction. Thus, $x'_2 - x_2 \neq 0 \mod q$ and has an inverse.

$$g^{(x_1 - x'_1) \cdot [(x'_2 - x_2)^{-1} \mod q]} = (h^{(x'_2 - x_2)})^{[(x'_2 - x_2)^{-1} \mod q]} = h^1 = h,$$

and so

$$\log_g h = [(x_1 - x'_1), (x_2 - x'_2)^{-1} \mod q]$$
Theorem 8.80. If there exists a probability polynomial-time algorithm G relative to which the discrete logarithm problem is hard,

then there exists a collision resistant hash function.