The key-distribution problem A public-key solution

Foundations of Cryptography Computer Science Department Wellesley College

Fall 2016

Introduction Key-Distribution Diffie-Hellman Exchange

(ロ) (個) (目) (目) (目) 目 のQ (V

Table of contents

Introduction

Key-Distribution

Die-Hellman Exchange

The key-distribution problem

- Private-key cryptography $requires shared, secret keys$ between each pair of **communicating parties.** , secret keys ; parties. \blacksquare
- How are all these keys shared in the first place? r st place?
- In situations where a large $number of parties must$ pairwise, secretly .
communicate, many schemes do not scale well. a large artics must many

(ロ) (個) (星) (星)

Introduction Key-Distribution Diffie-Hellman Exchange

E.

 $2Q$

Key storage and secrecy

• When there are *U* employees, the number of secret keys is

 \int *U* 2 ◆ $=\Theta(\mathit{U}^{2})$ and every employee holds $U - 1$ keys.

- The situation is worse when employees must communicate with remote databases, servers, and so forth.
- *•* All these keys need must be securely store.

Open systems

- *•* Private-key cryptography can be used to solve the problem of secure communication in "closed" systems where it is possible to distribute secret keys via physical means.
- What happens when parties cannot physically meet, or where parties have transient interactions?

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q (Y)

Introduction Key-Distribution Diffie-Hellman Exchange

Key distribution centers (KDC)

All employees share a key with the KDC.

- *1.* When Alice wants to communicate with Bob, she encrypts, using the secret key she shares with KDC: ' Alice wishes to communicate with Bob'
- *2.* The KDC chooses a new random key, called the *session key* and sends this to Alice (encrypted using Alice's shared key) and Bob (encrypted using Bob's shared key).
- *3.* Alice and Bob communicate using the session key and destroy it when they are done.

Good news/Bad news

Plus side:

- *1.* Each employee needs to store only *one* secret key. Limited storage devices, such as smart cards, could be used.
- *2.* When an employee joins the organization all that must be done is set up a secret-key with the KDC. No other employees need be updated.

Minus side:

- *1.* A successful attack on the KDC results in a complete break of security for all parties.
- *2.* When the KDC is down, secure communications come to a halt.

◆ロト ◆個 → → 著 → → 著 → → 著

INTRODUCTION KEY-DISTRIBUTION DIFFIE-HELLMAN EXCHANGE

 $2Q$

The state of affairs before 1976

After 1976, a new kid on the block

In 1976, Whitfield Diffie and Martin Hellman published a paper titled "New Directions in Cryptography" in which they proposed a completely new cryptographic paradigm.

*Addressing the limitations of private-key encryption**

- *1.* Public-key allows key distribution to be done over public channels. Initial deployment and system maintenance is simplified.
- 2. Public-key vastly reduces the need to store many different secret keys. Even if a large number of pairs want to communicate secretly, each party needs store only one key: *her own*.
- *3.* Finally, public-key is suitable for open environments where parties who have never previously interacted can communicate secretly.

*There are a fair number of details glossed over here, e.g., ensuring *authentic* distribution of public keys in the first place.

Digital signatures

In addition to the public-key encryption, Diffie and Hellman introduced a public-key analogue to message authentication codes, call *digital signatures*.

*Not only does this scheme prevent undetected tampering of a message, authenticity can be verified by anyone knowing the public key of the sender. *Nonrepudiation*: Alice cannot deny her signature.

Public-key implementation

- Although Diffie and Hellman introduced public-key encryption and digital signatures, they did not provide an implementation of either.
- *•* A year later, Ron Rivest, Adi Shamir, and Len Adleman proposed the *RSA problem* and presented the first public-key encryption and digital signature schemes.

◆ロト→個ト→ミト→ミト→ミ

 $2Q$

Implements of war

- Diffie and Hellman (and others publishing in cryptography) were under threat of prosecution.
- *•* Under the *International Trac in Arms Regulations*, technical literature on cryptography was considered an implement of war.

Introduction Key-Distribution Diffie-Hellman Exchange

K ロ K K 레 K K 포 K K 포 X 포 X Y K C K

Interactive key exchange

- *•* Finally, in their now famous paper, Diffie and Hellman provided an implementation of an *interactive key exchange*.
- An interactive key exchange protocol is a method whereby parties who do not share any secret information can generate a shared, secret key by communicating over a public channel.

The setting

Alice and Bob run some protocol Π in order to generate a shared secret.

- Beginning with a security parameter 1ⁿ, Alice and Bob choose (independent) random coins and run protocol Π :
- *•* At the end of the protocol, Alice and Bob output keys $k_A, k_B \in \{0, 1\}^n$, respectively.
- The basic correctness requirement is that $k_A = k_B$ for all choices of random coins.*

*Thus, we can speak of *the* key $k = k_A = k_B$.

Introduction Key-Distribution Diffie-Hellman Exchange

K ロ K K d K K w B K X B X X X X X B X D Q Q Q

A definition of security

The key-exchange experiment $KE_{A,\Pi}^{eav}(n)$:

- 1. Two parties holding 1^n execute protocol Π resulting in a transcript trans containing all the messages sent by the parties, and a *key k* that is output by each of the parties.
- 2. A random bit $b \leftarrow \{0, 1\}$ is chosen. If $b = 0$ then choose $\hat{k} \leftarrow \{0,1\}^n$ uniformly at random, and if $b = 1$ set $\hat{k} := k$.
- 3. A is given trans and \hat{k} , and outputs a bit b' .
- 4. The output of the experiment is defined to be 1 if $b' = b$, and 0 otherwise.

Definition 10.1 A key-exchange protocol Π is *secure in the presence of an eavesdropper* if for every probabilistic polynomial-time adversary *A* there exists a negligible function negl such that

$$
\Pr[\mathsf{KE}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)=1] \leq \frac{1}{2} + \mathsf{negl}(n).
$$

*The Die-Hellman key-exchange protocol**

Construction 10.2.

• Common input: The security input 1*ⁿ*

• The protocol:

- 1. Alice runs $\mathcal{G}(1^n)$ to obtain (\mathbb{G}, q, g) .
- 2. Alice chooses $x \leftarrow \mathbb{Z}_q$ uniformly at random, and computes $h_A := g^x$.
- *3.* Alice sends (\mathbb{G}, q, g, h_A) to Bob.
- 4. Bob receives (\mathbb{G}, q, g, h_A) . He chooses $y \leftarrow \mathbb{Z}_q$ uniformly at random and computes $h_B := g^y$. Bob sends h_B to Alice and outputs the key $k_B := h_A^y$.
- 5. Alice receives h_B and outputs the key $k_A := h_B^x$.

*Checking correctness is easy.

Introduction Key-Distribution Diffie-Hellman Exchange

K ロ K K d K K w B K X B X X X X X B X D Q Q Q

Security of the Diffie-Hellman exchange

- *•* At a bare bones minimum, in order for the Diffie-Hellman exchange to be secure it is necessary for the discrete logarithm problem to be hard relative to *G*.
- However, this is not sufficient since is may be possible to compute the key $k_A = k_B$ without explicitly finding *x* or *y*.
- *•* What is required is that *gxy* be *indistinguishable from random* for any adversary given g, g^x , and g^y .

Decisional Diffie-Hellman (DDH) problem once more

The *decisional Diffie-Hellman (DDH) problem* is to distinguish $DH_g(h_1, h_2)$ from a random group element for randomly chosen h_1 *, h*₂.

Definition 8.63. We say that the *DDH problem is hard relative to G* if for all probabilistic polynomial-time algorithms *A* there exists a negligible function negl such that

$$
|\Pr[\mathcal{A}(\mathbb{G},q,g,g^{\times},g^{\times},g^{\mathcal{Z}})=1]-\Pr[\mathcal{A}(\mathbb{G},q,g,g^{\times},g^{\times},g^{\times \mathcal{Y}})=1]|\leq \mathsf{negl}(n),
$$

where in each case the probabilities are taken over the experiment in which $\mathcal{G}(1^n)$ outputs (\mathbb{G}, q, g) , and the random $x, y, z \in \mathbb{Z}_q$ are chosen.

Introduction Key-Distribution Diffie-Hellman Exchange

K ロ ▶ K 레 ▶ K 로 ▶ K 로 ▶ 트로 볼 수 있어

Proof of security

Theorem 10.3. If the decisional Diffie-Hellman problem is hard relative to $\mathcal G$, then the Diffie-Hellman key-exchange protocol Π is secure in the presence of an eavesdropper (with respect to the experiment KEˆ eav *^A,*⇧.

Proof. Let *A* be a PPT adversary. Since $Pr[b = 0] = Pr[b = 1] = 1/2$, we have

$$
\Pr\left[\hat{\text{KE}}_{\mathcal{A},\Pi}^{\text{eav}}(n) = 1\right] = \frac{1}{2} \cdot \Pr\left[\hat{\text{KE}}_{\mathcal{A},\Pi}^{\text{eav}}(n) = 1 \mid b = 1\right] + \frac{1}{2} \cdot \Pr\left[\hat{\text{KE}}_{\mathcal{A},\Pi}^{\text{eav}}(n) = 1 \mid b = 0\right].
$$

*Here $\hat{\mathsf{KE}}_{\mathcal{A},\mathsf{\Pi}}^{\mathsf{eav}}$ stands for a modified experiment where if $b=0$ the adversary is given $\hat{k} \leftarrow \mathbb{G}$ chosen uniformly at random.

The adversary's goal

In experiment $\hat{\text{KE}}_{A,\Pi}^{\text{eav}}(n)$, adversary *A* receives $(\mathbb{G}, q, g, h_A, h_B, \hat{k})$, where $(\mathbb{G}, q, g, h_A, h_B)$ is the transcript of the protocol execution, and \hat{k} is either the actual key g^{xy} (if $b=1$) or a random group element (if $b = 0$).

Distinguishing between these two cases is exactly equivalent to solving the decisional Diffie-Hellman problem. $*$

*So are we really doing anything here?

Introduction Key-Distribution Diffie-Hellman Exchange

K ロ K K @ K K 할 K K 할 X 및 및 X 9 Q Q →

Adversary's probability of success

$$
\begin{split}\n&\Pr\left[\hat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)=1\right] \\
&= \frac{1}{2} \cdot \Pr\left[\hat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)=1 \mid b=1\right] + \frac{1}{2} \cdot \Pr\left[\hat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)=1 \mid b=0\right] \\
&= \frac{1}{2} \cdot \Pr[\mathcal{A}(\mathbb{G},g,q,g^{\times},g^{\times},g^{\times})=1] + \frac{1}{2} \cdot \Pr[\mathcal{A}(\mathbb{G},g,q,g^{\times},g^{\times},g^{\times})=0] \\
&= \frac{1}{2} \cdot \Pr[\mathcal{A}(\mathbb{G},g,q,g^{\times},g^{\times},g^{\times})=1] + \frac{1}{2} \cdot (1 - \Pr[\mathcal{A}(\mathbb{G},g,q,g^{\times},g^{\times},g^{\times})=1]) \\
&= \frac{1}{2} + \frac{1}{2} \cdot (\Pr[\mathcal{A}(\mathbb{G},g,q,g^{\times},g^{\times},g^{\times})=1] - \Pr[\mathcal{A}(\mathbb{G},g,q,g^{\times},g^{\times},g^{\times})=1]) \\
&\leq \frac{1}{2} + \frac{1}{2} \cdot |\Pr[\mathcal{A}(\mathbb{G},g,q,g^{\times},g^{\times},g^{\times})=1] - \Pr[\mathcal{A}(\mathbb{G},g,q,g^{\times},g^{\times},g^{\times})=1].\n\end{split}
$$

If the decisional Diffie-Hellman assumption is hard relative to G , this the absolute value in the final line is bounded by some negligible runction negl, and

$$
\Pr\left[\hat{\mathsf{KE}}^{\mathsf{eav}}_{\mathcal{A},\mathsf{\Pi}}(n)=1\right] \leq \frac{1}{2}+\frac{1}{2}\cdot \mathsf{negl}(n).
$$

 \Box