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Encrypting arbitrary-length messages: E�ciency issues

• Last time we showed how any
CPA-secure `-bit public-key
encryption scheme can be used
to obtain a CPA-secure
encryption scheme for messages
of arbitrary length. This works,
but is hopelessly ine�cient.

• Encrypting an `-bit message

requires �
def
= d`/`0e invocations

of the original scheme.

• We can do better for messages
that are su�ciently long, by
using private-key encryption in
tandem with public-key
encryption.
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Hybrid encryption

1. The sender chooses a random
secret key k , and encrypts k
using the public key of the
receiver. The resulting
ciphertext, c1 is sent to the
receiver establishing a shared
secret between the two.

2. The sender then encrypts the
message m using a private-key

encryption scheme and the
secret key k . The ciphertext, c2
is sent to the receiver and
recovered using the k .
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Key-encapsulation mechanisms (KEM)

• A more direct approach is to
use a public-key primitive called
a key-encapsulation mechanism

(KEM) to accomplish both of
these “in one shot.”

• This is conceptually cleaner and
more e�cient in the bargain.
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KEM: A formal introduction

Definition 11.9.

A key-encapsulation mechanism (KEM) is a tuple of probabilistic
polynomial-time algorithms (Gen, Encaps, Decaps) such that

1. The key-generation algorithm Gen takes as input the security
parameter 1n and outputs a public-/private-key pair (pk , sk) whose
lengths are at least n.

2. The deterministic Encapsulation algorithm Encaps takes as input a
public key pk and the security parameter 1n. It outputs a ciphertext
c and a key k 2 {0, 1}`(n) where ` is the key length. We write
(c , k)! Encapspk(1

n).

3. The decapsulation algorithm Decaps takes as input a private key sk

and a ciphertext c , and outputs a key k or a special symbol ?
denoting failure. We write k := Decapssk(c).

It is required that with all by negligible probability over (sk , pk) output

by Gen(1n), if Encappk(1n) outputs (c , k), then Decapssk(c) outputs k .
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Data-encapsulation mechanisms (DEM)

• We implement hybrid
encryption using KEM The
sender runs Encappk(1n) to
obtain c with a key k ; it uses a
private-key encryption scheme
to encrypt its message m.

• The private-key encryption
scheme used here is calla
data-encapsulation mechanism

(DEM).

• The ciphertext sent to the
receiver includes both c and c

0.
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Construction of a hybrid encryption scheme using
KEM/DEM

Construction 11.10

Let ⇧ = (Gen,Encaps,Decaps) be a KEM with key length n, and let
⇧0 = (Gen0,Enc0,Dec0) be a private-key encryption scheme. Construct a
public-key encryption scheme ⇧hy = (Genhy,Enchy,Dechy) as follows:

• Genhy: On input 1n run Gen(1n) and use the public and private keys
(pk , sk) that are output.

• Enchy: On input a public key pk and a message m 2 {0, 1}⇤,
proceed as follows:

1. Compute (c , k) Encapspk(1
n).

2. Compute c

0  Enc0k(m).
3. Output the ciphertext hc , c 0i.

• Dechy: On input a private key sk and a ciphertext hc , c 0i do:
1. Compute k := Decapssk(c).
2. Output the message m := Dec0k(c

0).
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E�ciency of the hybrid encryption scheme

Remark. If |m| < |n| we might as well use pk to encrypt m
directly. However, when |m|� |n| the hybrid scheme gives a
substantial improvement assuming Enc0 is more e�cient than Enc.

Analysis. For fixed n, let ↵ denote the cost of encrypting an n-bit
key using Encaps, and let � denote the per bit cost of encryption
using Enc0. Then per bit cost of plaintext using ⇧hy is

↵+ � · |m|
|m| =

↵

|m| + �.

which approaches � for su�ciently long m.

*A similar analysis can be used to calculate hybrid encryption ciphtertext

length.
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Security of hybrid encryption

We will show that

• If ⇧ is CPA-secure KEM and
the private-key scheme ⇧0 has
indistinguishable encryptions in
the presence of an
eavesdropper, then it turns out
the hybrid scheme is ⇧hy is
CPA-secure.

• The fact the ⇧0 need only have
indistinguishable encryptions in
the presence of an eavesdropper
means weaker, but more
e�cient, schemes (such as
stream ciphers) can be used on
the private-key side.
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CPA-secure key-encapsulation mechanisms

The CPA indistinguishability experiment KEMcpa
A,⇧(n):

1. Gen(1n) is run to obtain keys (pk , sk). Then Encapspk(1n) is run to
generate (c , k) with k 2 {0, 1}n.

2. A uniform bit b  {0, 1} is chosen. if b = 0 set k̂ := k . If b = 1
then choose a uniform k̂ 2 {0, 1}n.

3. Given (pk , c , k̂) to A who outputs a bit b0. The output of the
experiment is defined to be 1 if b0 = b, and 0 otherwise.

Definition 11.11. A key-encapsulation mechanism ⇧ is CPA-secure if for
all probabilistic polynomial-time adversaries A there exists a negligible
function negl such that

Pr[KEMcpa
A,⇧(n) = 1]  1

2
+ negl(n).
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Theorem and proof goals

Theorem 11.12. If ⇧ is a CPA-secure KEM and ⇧0 is a private-key
encryption scheme that has indistinguishable encryptions in the presence
of an eavesdropper, then ⇧hy as in Construction 11.10 is a CPA-secure
public-key encryption scheme.
Proof goals.

Let Encaps(1)pk (1
n) (resp., Encaps(2)pk (1

n)) denote the ciphertext (resp. key)
output by Encaps. The fact that ⇧ is CPA-secure means that

⇣
pk ,Encaps(1)pk (1

n),Encaps(2)pk (1
n)
⌘ c⌘

⇣
pk ,Encaps(1)pk (1

n), k 0
⌘

Similarly ⇧0 has indistinguishable encryption means that for any m0,m1

output by A, Enc’k(m0)
c⌘ Enc’k(m1). To prove CPA-security of ⇧hy we

show
⇣
pk ,Encaps(1)pk (1

n),Enc0k(m0)
⌘ c⌘

⇣
pk ,Encaps(1)pk (1

n),Enc0k(m1)
⌘
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The proof proceeds in three steps
Theorem 11.12. If ⇧ is a CPA-secure KEM and ⇧0 is a private-key
encryption scheme that has indistinguishable encryptions in the
presence of an eavesdropper, then ⇧hy as in Construction 11.10 is
a CPA-secure public-key encryption scheme.
Proof idea.

hpk ,Encaps(1)pk (1
n),Enc0k(m0)i

(by “transitivity”)

-� hpk ,Encaps(1)pk (1
n),Enc0k(m1)i

(by security of ⇧)

6

?

(by security of ⇧)

6

?

(by security of ⇧

0
)

-�hpk ,Encaps(1)pk (1
n),Enc0k0(m0)i hpk ,Encaps(1)pk (1

n),Enc0k0(m1)i
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The theorem and proof

Theorem 11.12. If ⇧ is a CPA-secure KEM and ⇧0 is a private-key
encryption scheme that has indistinguishable encryptions in the presence
of an eavesdropper, then ⇧hy as in Construction 11.10 is a CPA-secure
public-key encryption scheme.

Proof. We show ⇧hy has indistinguishable encryption in the presence of
an eavesdropper and use Proposition 11.3.
Fix an arbitrary PPT Ahy, and consider experiment PubKeav

Ahy,⇧hy(n). We
show

Pr[PubKeav
Ahy,⇧hy(n) = 1]  1

2
+ negl(n).

By definition of the experiment,

Pr[PubKeav
Ahy,⇧hy(n) = 1] =

1

2
· Pr[Ahy(Encaps(1)pk (1

n),Enc0k(m0)) = 0]

+
1

2
· Pr[Ahy(Encaps(1)pk (1

n),Enc0k(m1)) = 1]

where k = Encaps(2)pk (1
n).
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First we establish the left-hand indistinguishability

hpk ,Encaps(1)pk (1
n),Enc0k(m0)i

(by “transitivity”)

-� hpk ,Encaps(1)pk (1
n),Enc0k(m1)i

(by security of ⇧)

6

?

(by security of ⇧)

6

?

(by security of ⇧

0
)

-�hpk ,Encaps(1)pk (1
n),Enc0k0(m0)i hpk ,Encaps(1)pk (1

n),Enc0k0(m1)i
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A public-key eavesdropping adversary
Adversary A1:

1. A1, given (pk , c , k̂).

2. A1 runs Ahy(pk) to obtain two messages m0,m1. Then A1

computes c 0  Enck̂(m0), then runs Ahy(c , c 0) and outputs the bit
b

0 that is output by Ahy.

When b = 0 in KEMcpa
A1,⇧

(n), A1 is given (pk , c , k̂) where c , k̂ were

output by Encaps(1)pk (1
n) . So, Ahy is given hc ,Enc0k(1n)i where k is

encapped by c . In this case,

Pr[A1 outputs 0 | b = 0] = Pr[Ahy(Encaps(1)pk (1
n),Enc0k(m0)) = 0].

When b = 1 in KEMcpa
A1,⇧

(n) is given (pk , c , k̂) where k̂ is uniform and

independent of c . So, Ahy is given hc ,Enc0k0(1n)i where k

0 is encapped
by c .

Pr[A1 outputs 1 | b = 1] = Pr[Ahy(Encaps(1)pk (0
n),Enc0k0(m0)) = 1].
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Completing the left-hand argument

Since ⇧ is a CPA-secure KEM, there exists a negligible function
negl1 such that:

1

2
+ negl1 � Pr[KEMcpa

A1,⇧
(n) = 1]

=
1

2
· Pr[A1 outputs 0 | b = 0] +

1

2
· Pr[A1 outputs 1 | b = 1]

=
1

2
· Pr[Ahy(Encapspk(1

n),Enc0k(m0)) = 0]

+
1

2
· Pr[Ahy(Encapspk(1

n),Enc0k0(m0)) = 1].

where K = Encaps(2)pk (1
n) and k

0 is uniform and independent.

Introduction Key-encapsulation mechanism Security of hybrid encryption

Right-hand indistinguishability is proven similarly

hpk ,Encaps(1)pk (1
n),Enc0k(m0)i

(by “transitivity”)

-� hpk ,Encaps(1)pk (1
n),Enc0k(m1)i

(by security of ⇧)

6

?

(by security of ⇧)

6

?

(by security of ⇧

0
)

-�hpk ,Encaps(1)pk (1
n),Enc0k0(m0)i hpk ,Encaps(1)pk (1

n),Enc0k0(m1)i
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Results of the right-hand argument

For any PPT adversary A2 that eavesdrops on a message
encrypted using public-key scheme ⇧. there exists a negligible
function negl2 such that:

1

2
+ negl1 � Pr[KEMcpa

A1,⇧
(n) = 1]

=
1

2
· Pr[A2 outputs 0 | b = 0] +

1

2
· Pr[A2 outputs 1 | b = 1]

=
1

2
· Pr[Ahy(pk ,Encapspk(1

n),Enc0k(m1)) = 1]

+
1

2
· Pr[Ahy(pk ,Encapspk(1

n),Enc0k 0(m1)) = 0].
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Next we establish the bottom indistinguishability

hpk ,Encaps(1)pk (1
n),Enc0k(m0)i

(by “transitivity”)

-� hpk ,Encaps(1)pk (1
n),Enc0k(m1)i

(by security of ⇧)

6

?

(by security of ⇧)

6

?

(by security of ⇧

0
)

-�hpk ,Encaps(1)pk (1
n),Enc0k0(m0)i hpk ,Encaps(1)pk (1

n),Enc0k0(m1)i
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A private-key eavesdropping adversary
Adversary A0

:

1. A0 runs Gen(1n) on its own to generate keys (pk , sk). Also compute

c  Encaps(1)pk (1
n).

2. A0 runs Ahy(pk) to obtain two messages m0,m1 which it then
outputs and receives in return a ciphertext c 0.

3. A0 runs Ahy(c , c 0) and outputs the bit b0 that is output by Ahy.

When b = 0 in PubKeav
A0,⇧0(n), A0 is given Enc0k(m0) where k

0 was chosen
at random and independent of everything. In this case, Ahy is given a
ciphertext of the form hc ,Enc0k0(m0)i. So

Pr[A0 outputs 0 | b = 0] = Pr[Ahy(Encaps(1)pk (1
n),Enc0k(m0)) = 0].

When b = 1 in PubKeav
A0,⇧0(n), A0 is given Enc0k0(m1). In this case,

Pr[A1 outputs 1 | b = 1] = Pr[Ahy(Encaps(1)pk (1
n),Enc0k0(m1)) = 1].
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Completing the bottom argument

Since ⇧0 has indistinguishable encryption in the presence of an
eavesdropper, there exists a negligible function negl0 such that:

1

2
+ negl0 � Pr[PubKeav

A0,⇧0(n) = 1]

=
1

2
· Pr[A0 outputs 0 | b = 0] +

1

2
· Pr[A0 outputs 1 | b = 1]

=
1

2
· Pr[Ahy (pk ,Encaps(1)pk (1

n),Enc0k0(m0)) = 0]

+
1

2
· Pr[Ahy (pk ,Encaps(1)pk (1

n),Enc0k0(m1)) = 1].
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Completing the proof of Theorem 11.12

Summing these three inequalities and using the fact that the sum
of three negligible functions is negligible, we have

3

2

+ negl �

1

2

· (Pr[Ahy
(pk, c,Enc0k(m0)) = 0] + Pr[Ahy

(pk, c,Enc0k0(m0)) = 1]

+Pr[Ahy
(pk, c,Enc0k0(m0)) = 0] + Pr[Ahy

(pk, c,Enc0k0(m1)) = 1]

+Pr[Ahy
(pk, c,Enc0k0(m1)) = 1] + Pr[Ahy

(pk, c,Enc0k0(m1)) = 0])

Using the fact that several of these probabilities sum to 1, we have

1

2

+ negl

� 1

2

· (Pr[Ahy
(Encpk(k),Enc

0
k(m0)) = 0] + Pr[Ahy

(Encpk(k),Enc
0
k(m1)) = 1])

= Pr[PubK

sfeav
Ahy ,⇧hy (n) = 1].


