
Introduction Key-encapsulation mechanism Security of hybrid encryption

Oil and water
Hybrid encryption techniques

Foundations of Cryptography
Computer Science Department

Wellesley College

Fall 2016

Introduction Key-encapsulation mechanism Security of hybrid encryption

Table of contents

Introduction

Key-encapsulation mechanism

Security of hybrid encryption

Introduction Key-encapsulation mechanism Security of hybrid encryption

Encrypting arbitrary-length messages: E�ciency issues

• Last time we showed how any
CPA-secure `-bit public-key
encryption scheme can be used
to obtain a CPA-secure
encryption scheme for messages
of arbitrary length. This works,
but is hopelessly ine�cient.

• Encrypting an `-bit message

requires �
def
= d`/`0e invocations

of the original scheme.

• We can do better for messages
that are su�ciently long, by
using private-key encryption in
tandem with public-key
encryption.

Introduction Key-encapsulation mechanism Security of hybrid encryption

Hybrid encryption

1. The sender chooses a random
secret key k , and encrypts k
using the public key of the
receiver. The resulting
ciphertext, c1 is sent to the
receiver establishing a shared
secret between the two.

2. The sender then encrypts the
message m using a private-key

encryption scheme and the
secret key k . The ciphertext, c2
is sent to the receiver and
recovered using the k .

Introduction Key-encapsulation mechanism Security of hybrid encryption

Key-encapsulation mechanisms (KEM)

• A more direct approach is to
use a public-key primitive called
a key-encapsulation mechanism

(KEM) to accomplish both of
these “in one shot.”

• This is conceptually cleaner and
more e�cient in the bargain.

Introduction Key-encapsulation mechanism Security of hybrid encryption

KEM: A formal introduction

Definition 11.9.

A key-encapsulation mechanism (KEM) is a tuple of probabilistic
polynomial-time algorithms (Gen, Encaps, Decaps) such that

1. The key-generation algorithm Gen takes as input the security
parameter 1n and outputs a public-/private-key pair (pk , sk) whose
lengths are at least n.

2. The deterministic Encapsulation algorithm Encaps takes as input a
public key pk and the security parameter 1n. It outputs a ciphertext
c and a key k 2 {0, 1}`(n) where ` is the key length. We write
(c , k)! Encapspk(1

n).

3. The decapsulation algorithm Decaps takes as input a private key sk

and a ciphertext c , and outputs a key k or a special symbol ?
denoting failure. We write k := Decapssk(c).

It is required that with all by negligible probability over (sk , pk) output

by Gen(1n), if Encappk(1n) outputs (c , k), then Decapssk(c) outputs k .

Introduction Key-encapsulation mechanism Security of hybrid encryption

Data-encapsulation mechanisms (DEM)

• We implement hybrid
encryption using KEM The
sender runs Encappk(1n) to
obtain c with a key k ; it uses a
private-key encryption scheme
to encrypt its message m.

• The private-key encryption
scheme used here is calla
data-encapsulation mechanism

(DEM).

• The ciphertext sent to the
receiver includes both c and c

0.

Introduction Key-encapsulation mechanism Security of hybrid encryption

Construction of a hybrid encryption scheme using
KEM/DEM

Construction 11.10

Let ⇧ = (Gen,Encaps,Decaps) be a KEM with key length n, and let
⇧0 = (Gen0,Enc0,Dec0) be a private-key encryption scheme. Construct a
public-key encryption scheme ⇧hy = (Genhy,Enchy,Dechy) as follows:

• Genhy: On input 1n run Gen(1n) and use the public and private keys
(pk , sk) that are output.

• Enchy: On input a public key pk and a message m 2 {0, 1}⇤,
proceed as follows:

1. Compute (c , k) Encapspk(1
n).

2. Compute c

0 Enc0k(m).
3. Output the ciphertext hc , c 0i.

• Dechy: On input a private key sk and a ciphertext hc , c 0i do:
1. Compute k := Decapssk(c).
2. Output the message m := Dec0k(c

0).

Introduction Key-encapsulation mechanism Security of hybrid encryption

E�ciency of the hybrid encryption scheme

Remark. If |m| < |n| we might as well use pk to encrypt m
directly. However, when |m|� |n| the hybrid scheme gives a
substantial improvement assuming Enc0 is more e�cient than Enc.

Analysis. For fixed n, let ↵ denote the cost of encrypting an n-bit
key using Encaps, and let � denote the per bit cost of encryption
using Enc0. Then per bit cost of plaintext using ⇧hy is

↵+ � · |m|
|m| =

↵

|m| + �.

which approaches � for su�ciently long m.

*A similar analysis can be used to calculate hybrid encryption ciphtertext

length.

Introduction Key-encapsulation mechanism Security of hybrid encryption

Security of hybrid encryption

We will show that

• If ⇧ is CPA-secure KEM and
the private-key scheme ⇧0 has
indistinguishable encryptions in
the presence of an
eavesdropper, then it turns out
the hybrid scheme is ⇧hy is
CPA-secure.

• The fact the ⇧0 need only have
indistinguishable encryptions in
the presence of an eavesdropper
means weaker, but more
e�cient, schemes (such as
stream ciphers) can be used on
the private-key side.

Introduction Key-encapsulation mechanism Security of hybrid encryption

CPA-secure key-encapsulation mechanisms

The CPA indistinguishability experiment KEMcpa
A,⇧(n):

1. Gen(1n) is run to obtain keys (pk , sk). Then Encapspk(1n) is run to
generate (c , k) with k 2 {0, 1}n.

2. A uniform bit b {0, 1} is chosen. if b = 0 set k̂ := k . If b = 1
then choose a uniform k̂ 2 {0, 1}n.

3. Given (pk , c , k̂) to A who outputs a bit b0. The output of the
experiment is defined to be 1 if b0 = b, and 0 otherwise.

Definition 11.11. A key-encapsulation mechanism ⇧ is CPA-secure if for
all probabilistic polynomial-time adversaries A there exists a negligible
function negl such that

Pr[KEMcpa
A,⇧(n) = 1] 1

2
+ negl(n).

Introduction Key-encapsulation mechanism Security of hybrid encryption

Theorem and proof goals

Theorem 11.12. If ⇧ is a CPA-secure KEM and ⇧0 is a private-key
encryption scheme that has indistinguishable encryptions in the presence
of an eavesdropper, then ⇧hy as in Construction 11.10 is a CPA-secure
public-key encryption scheme.
Proof goals.

Let Encaps(1)pk (1
n) (resp., Encaps(2)pk (1

n)) denote the ciphertext (resp. key)
output by Encaps. The fact that ⇧ is CPA-secure means that

⇣
pk ,Encaps(1)pk (1

n),Encaps(2)pk (1
n)
⌘ c⌘

⇣
pk ,Encaps(1)pk (1

n), k 0
⌘

Similarly ⇧0 has indistinguishable encryption means that for any m0,m1

output by A, Enc’k(m0)
c⌘ Enc’k(m1). To prove CPA-security of ⇧hy we

show
⇣
pk ,Encaps(1)pk (1

n),Enc0k(m0)
⌘ c⌘

⇣
pk ,Encaps(1)pk (1

n),Enc0k(m1)
⌘

Introduction Key-encapsulation mechanism Security of hybrid encryption

The proof proceeds in three steps
Theorem 11.12. If ⇧ is a CPA-secure KEM and ⇧0 is a private-key
encryption scheme that has indistinguishable encryptions in the
presence of an eavesdropper, then ⇧hy as in Construction 11.10 is
a CPA-secure public-key encryption scheme.
Proof idea.

hpk ,Encaps(1)pk (1
n),Enc0k(m0)i

(by “transitivity”)

-� hpk ,Encaps(1)pk (1
n),Enc0k(m1)i

(by security of ⇧)

6

?

(by security of ⇧)

6

?

(by security of ⇧

0
)

-�hpk ,Encaps(1)pk (1
n),Enc0k0(m0)i hpk ,Encaps(1)pk (1

n),Enc0k0(m1)i

Introduction Key-encapsulation mechanism Security of hybrid encryption

The theorem and proof

Theorem 11.12. If ⇧ is a CPA-secure KEM and ⇧0 is a private-key
encryption scheme that has indistinguishable encryptions in the presence
of an eavesdropper, then ⇧hy as in Construction 11.10 is a CPA-secure
public-key encryption scheme.

Proof. We show ⇧hy has indistinguishable encryption in the presence of
an eavesdropper and use Proposition 11.3.
Fix an arbitrary PPT Ahy, and consider experiment PubKeav

Ahy,⇧hy(n). We
show

Pr[PubKeav
Ahy,⇧hy(n) = 1] 1

2
+ negl(n).

By definition of the experiment,

Pr[PubKeav
Ahy,⇧hy(n) = 1] =

1

2
· Pr[Ahy(Encaps(1)pk (1

n),Enc0k(m0)) = 0]

+
1

2
· Pr[Ahy(Encaps(1)pk (1

n),Enc0k(m1)) = 1]

where k = Encaps(2)pk (1
n).

Introduction Key-encapsulation mechanism Security of hybrid encryption

First we establish the left-hand indistinguishability

hpk ,Encaps(1)pk (1
n),Enc0k(m0)i

(by “transitivity”)

-� hpk ,Encaps(1)pk (1
n),Enc0k(m1)i

(by security of ⇧)

6

?

(by security of ⇧)

6

?

(by security of ⇧

0
)

-�hpk ,Encaps(1)pk (1
n),Enc0k0(m0)i hpk ,Encaps(1)pk (1

n),Enc0k0(m1)i

Introduction Key-encapsulation mechanism Security of hybrid encryption

A public-key eavesdropping adversary
Adversary A1:

1. A1, given (pk , c , k̂).

2. A1 runs Ahy(pk) to obtain two messages m0,m1. Then A1

computes c 0 Enck̂(m0), then runs Ahy(c , c 0) and outputs the bit
b

0 that is output by Ahy.

When b = 0 in KEMcpa
A1,⇧

(n), A1 is given (pk , c , k̂) where c , k̂ were

output by Encaps(1)pk (1
n) . So, Ahy is given hc ,Enc0k(1n)i where k is

encapped by c . In this case,

Pr[A1 outputs 0 | b = 0] = Pr[Ahy(Encaps(1)pk (1
n),Enc0k(m0)) = 0].

When b = 1 in KEMcpa
A1,⇧

(n) is given (pk , c , k̂) where k̂ is uniform and

independent of c . So, Ahy is given hc ,Enc0k0(1n)i where k

0 is encapped
by c .

Pr[A1 outputs 1 | b = 1] = Pr[Ahy(Encaps(1)pk (0
n),Enc0k0(m0)) = 1].

Introduction Key-encapsulation mechanism Security of hybrid encryption

Completing the left-hand argument

Since ⇧ is a CPA-secure KEM, there exists a negligible function
negl1 such that:

1

2
+ negl1 � Pr[KEMcpa

A1,⇧
(n) = 1]

=
1

2
· Pr[A1 outputs 0 | b = 0] +

1

2
· Pr[A1 outputs 1 | b = 1]

=
1

2
· Pr[Ahy(Encapspk(1

n),Enc0k(m0)) = 0]

+
1

2
· Pr[Ahy(Encapspk(1

n),Enc0k0(m0)) = 1].

where K = Encaps(2)pk (1
n) and k

0 is uniform and independent.

Introduction Key-encapsulation mechanism Security of hybrid encryption

Right-hand indistinguishability is proven similarly

hpk ,Encaps(1)pk (1
n),Enc0k(m0)i

(by “transitivity”)

-� hpk ,Encaps(1)pk (1
n),Enc0k(m1)i

(by security of ⇧)

6

?

(by security of ⇧)

6

?

(by security of ⇧

0
)

-�hpk ,Encaps(1)pk (1
n),Enc0k0(m0)i hpk ,Encaps(1)pk (1

n),Enc0k0(m1)i

Introduction Key-encapsulation mechanism Security of hybrid encryption

Results of the right-hand argument

For any PPT adversary A2 that eavesdrops on a message
encrypted using public-key scheme ⇧. there exists a negligible
function negl2 such that:

1

2
+ negl1 � Pr[KEMcpa

A1,⇧
(n) = 1]

=
1

2
· Pr[A2 outputs 0 | b = 0] +

1

2
· Pr[A2 outputs 1 | b = 1]

=
1

2
· Pr[Ahy(pk ,Encapspk(1

n),Enc0k(m1)) = 1]

+
1

2
· Pr[Ahy(pk ,Encapspk(1

n),Enc0k 0(m1)) = 0].

Introduction Key-encapsulation mechanism Security of hybrid encryption

Next we establish the bottom indistinguishability

hpk ,Encaps(1)pk (1
n),Enc0k(m0)i

(by “transitivity”)

-� hpk ,Encaps(1)pk (1
n),Enc0k(m1)i

(by security of ⇧)

6

?

(by security of ⇧)

6

?

(by security of ⇧

0
)

-�hpk ,Encaps(1)pk (1
n),Enc0k0(m0)i hpk ,Encaps(1)pk (1

n),Enc0k0(m1)i

Introduction Key-encapsulation mechanism Security of hybrid encryption

A private-key eavesdropping adversary
Adversary A0

:

1. A0 runs Gen(1n) on its own to generate keys (pk , sk). Also compute

c Encaps(1)pk (1
n).

2. A0 runs Ahy(pk) to obtain two messages m0,m1 which it then
outputs and receives in return a ciphertext c 0.

3. A0 runs Ahy(c , c 0) and outputs the bit b0 that is output by Ahy.

When b = 0 in PubKeav
A0,⇧0(n), A0 is given Enc0k(m0) where k

0 was chosen
at random and independent of everything. In this case, Ahy is given a
ciphertext of the form hc ,Enc0k0(m0)i. So

Pr[A0 outputs 0 | b = 0] = Pr[Ahy(Encaps(1)pk (1
n),Enc0k(m0)) = 0].

When b = 1 in PubKeav
A0,⇧0(n), A0 is given Enc0k0(m1). In this case,

Pr[A1 outputs 1 | b = 1] = Pr[Ahy(Encaps(1)pk (1
n),Enc0k0(m1)) = 1].

Introduction Key-encapsulation mechanism Security of hybrid encryption

Completing the bottom argument

Since ⇧0 has indistinguishable encryption in the presence of an
eavesdropper, there exists a negligible function negl0 such that:

1

2
+ negl0 � Pr[PubKeav

A0,⇧0(n) = 1]

=
1

2
· Pr[A0 outputs 0 | b = 0] +

1

2
· Pr[A0 outputs 1 | b = 1]

=
1

2
· Pr[Ahy (pk ,Encaps(1)pk (1

n),Enc0k0(m0)) = 0]

+
1

2
· Pr[Ahy (pk ,Encaps(1)pk (1

n),Enc0k0(m1)) = 1].

Introduction Key-encapsulation mechanism Security of hybrid encryption

Completing the proof of Theorem 11.12

Summing these three inequalities and using the fact that the sum
of three negligible functions is negligible, we have

3

2

+ negl �

1

2

· (Pr[Ahy
(pk, c,Enc0k(m0)) = 0] + Pr[Ahy

(pk, c,Enc0k0(m0)) = 1]

+Pr[Ahy
(pk, c,Enc0k0(m0)) = 0] + Pr[Ahy

(pk, c,Enc0k0(m1)) = 1]

+Pr[Ahy
(pk, c,Enc0k0(m1)) = 1] + Pr[Ahy

(pk, c,Enc0k0(m1)) = 0])

Using the fact that several of these probabilities sum to 1, we have

1

2

+ negl

� 1

2

· (Pr[Ahy
(Encpk(k),Enc

0
k(m0)) = 0] + Pr[Ahy

(Encpk(k),Enc
0
k(m1)) = 1])

= Pr[PubK

sfeav
Ahy ,⇧hy (n) = 1].

