Textbook RSA And its insecurities

Foundations of Cryptography Computer Science Department Wellesley College

Fall 2016

INTRODUCTION TEXTBOOK RSA ATTACKS ON RSA PADDED RSA
Table of contents

Introduction

 $Textbook \ RSA$

Attacks on RSA

Padded RSA

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ うへぐ

RSA encryption

- So far, lots of talk, but no action. We haven't seen a single example of a real, live public-key encryption scheme.
- That is about to change. Today we introduce a very well-known scheme based on the RSA assumption discussed several weeks ago.
- We start with a key generation algorithm that should look familiar.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Algorithm 11.25. RSA key generation GenRSA

Input: Length *n*; parameter *t Output: N*, *e*, *d* as described below

 $(N, p, q) \leftarrow \text{GenModulus}(1^n)^*$ $\phi(N) := (p-1)(q-1)$ **choose** e such that $gcd(e, \phi(N)) = 1$ **compute** $d := [e^{-1} \mod \phi(N)]^{**}$ return N, e, d

*N = pq with p, q *n*-bit primes. **Such an integer d exists since e is invertible modulo $\phi(N)$.

Textbook RSA

Construction 11.26.

Define a public-key encryption scheme using GenRSA as follows:

- Gen: On input 1ⁿ run GenRSA(1ⁿ) to obtain N, e, and d. The public key is (N, e) and the private key is (N, d).
- Enc: On input a public key pk = ⟨N, e⟩ and a message m ∈ Z^{*}_N, compute the ciphertext

$$c := [m^e \mod N].$$

Dec: On input a private key sk = ⟨N, d⟩ and a ciphertext
 c ∈ Z^{*}_N, compute the message

$$m := [c^d \mod N].$$

Example 11.27.

Say that GenRSA outputs (N, e, d) = (391, 3, 235).* To encrypt the message $m = 158 \in \mathbb{Z}_{391}^*$ using the public key (391, 3), we compute

$$c := [158^3 \mod 391] = 295.$$

To decrypt, the receiver computes

 $[295^{235} \mod 391] = 158.$

Ta-da!

*Note that $391 = 17 \cdot 23$ so $\phi(391) = 16 \cdot 22 = 352$. Moreover, $3 \cdot 235 = 1$ mod 352.

▲□▶▲□▶▲□▶▲□▶ □ のへで

One thing's for sure

- Computing the private key is at least as hard as factoring moduli output by GenRSA.
- Unfortunately, this says nothing about whether the message can be recovered from the ciphertext using other means.
- Worst still, "textbook RSA" is *not* secure with respect to any of the definitions of security proposed so far.*

Textbook RSA

*Why?

Encoding binary strings as elements of \mathbb{Z}_{N}^{*} .

Remark. Let $\ell = ||N||$. Binary strings of length $\ell - 1$ may be view as elements of \mathbb{Z}_N . Strings of varying length may be padded* to bring them up to correct length.

Concern. Not all encoded messages *m* lie in \mathbb{Z}_N^* since it may be the case that $gcd(m, N) \neq 1$. What then?

*In some unambiguous fashion. More on this in your homework.

The choice of e

Remark. For the most part, there does not appear to be any difference in the hardness of the RSA problem for different choices of the exponent *e*, as long as it isn't too small.

Concern. One popular choice is to set e = 3, since then computing *e*th powers modulo *N* requires only two multiplications. However, this choice does leave textbook RSA vulnerable to certain attacks* (more soon).

*More evidence that Construction 10.15 leaves much to be desired.

Remark. When *e* is small, for example e = 3 and the message *m* is such that $m < N^{1/3}$, then the encryption $c = [m^3 \mod N] = m^3$ doesn't involve any modular reduction. We can recover the message *m* by computing the cube root of *c*.

Remark. It gets worse, there is a more general attack for any size message when *e* is small and the message is sent to multiple receivers. To see how, we will first need . . .

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○ ◆

The Chinese remainder theorem

Theorem 8.24. Let N = pq where p and q are relatively prime. Then

 $\mathbb{Z}_N \simeq \mathbb{Z}_p imes \mathbb{Z}_q$ and $\mathbb{Z}_N^* \simeq \mathbb{Z}_p^* imes \mathbb{Z}_q^*$.

Moreover, let f be the function mapping elements $x \in \{0, ..., N-1\}$ to pairs (x_p, x_q) with $x_p \in \{1, ..., p-1\}$ and $x_q \in \{1, ..., q-1\}$ defined by

$$f(x) \stackrel{\text{def}}{=} ([x \mod p], [x \mod q]).$$

Then f is an isomorphism from \mathbb{Z}_N to $\mathbb{Z}_p \times \mathbb{Z}_q$ as well as an isomorphism from \mathbb{Z}_N^* to $\mathbb{Z}_p^* \times \mathbb{Z}_q^*$.

For example. Take $N = 15 = 5 \cdot 3$ and consider $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}.$

INTRODUCTION

Textbook

ATTACKS ON RSA

Padded RSA

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Attacking textbook RSA using the Chinese remainder theorem

Example. Let e = 3, and say m was sent to three different parties holding public keys $pk_1 = \langle N_1, 3 \rangle$, $pk_2 = \langle N_2, 3 \rangle$, and $pk_3 = \langle N_3, 3 \rangle$. The eavesdropper sees

 $c_1 = [m^3 \mod N_1] \text{ and } c_2 = [m^3 \mod N_2] \text{ and } c_3 = [m^3 \mod N_3].$

Assume $gcd(N_i, N_j) \neq 1$ for all i, j.* Let $N^* = N_1 N_2 N_3$. An extended version of the Chinese remainder theorem says there exists a unique $\hat{c} < N^*$ such that:

$$\hat{c} = c_1 \mod N_1$$

 $\hat{c} = c_2 \mod N_2$
 $\hat{c} = c_3 \mod N_3$

*If not we're done. Why?

Brute again

Since textbook RSA is deterministic, if the message m is chosen from a small list of possible values, then it is possible to determine m from the ciphertext $c = [m^e \mod N]$ by trying each value of m, $1 \le m \le \mathcal{L}$.

When \mathcal{L} is large, as for example in the case of hybrid encryption where $\mathcal{L} = 2^{\ell}$, one might hope Brute would not be a threat. Unfortunately, ...

We assume that $m < 2^{\ell}$ and that the attacker knows ℓ . The value α is a constant with $\frac{1}{2} < \alpha < 1$.

Algorithm 11.28. An attack on textbook RSA encryption

Input: Public key $\langle N, e \rangle$; ciphertext *c*; parameter ℓ *Output:* $m < 2^{\ell}$

set $T := 2^{\alpha \ell}$ for r = 1 to T: $x_i := [c/r^e \mod N]$ sort the pairs $\{(r, x_r)\}_{r=1}^T$ by their second component for s = 1 to T: if $[s^e \mod N] \stackrel{?}{=} x_r$ for some rreturn $[r \cdot s \mod N]$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○ ◆

Common modulus attack

The boss wants to use the same modulus N for each of its employees. Since it is not desirable for messages encrypted to one employee to be read by another other, the company issues different (e_i, d_i) to each employee.

That is, the public key of the *i*th employee is $pk_i = \langle N, e_i \rangle$ and the private key is $sk = \langle N, d_i \rangle$ What's wrong with this picture?

Remark. So, suppose the employees all trust each other, and security only needs to be maintained against outsiders.

Suppose the same message m is encrypted and sent to two different employees with the public keys (N, e_1) and (N, e_2) where $gcd(e_1, e_2) = 1$. Then an eavesdropper sees

 $c_1 = m^{e_1} \mod N$ and $c_2 = m^{e_2} \mod N$.

What's the harm in that?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

INTRODUCTION

Padded RSA

- RSA does not possibly satisfy any of our definitions of security* and indeed is vulnerable to a number of realistic attacks.
- A simple "fix" might be to add some form of random padding to the message before encryption.

*It is deterministic.

Padded RSA: The construction

Construction 11.30.

Let ℓ be a function with $\ell(n) \leq 2n - 4$ for all n. Define a public-key encryption scheme as follows:

- Gen: On input 1ⁿ, run GenRSA(1ⁿ) to obtain (N, e, d). Output public key pk = ⟨N, e⟩, and the private key sk = ⟨N, d⟩.
- Enc: On input a public key pk = ⟨N, e⟩ and a message m ∈ {0,1}^{||N||-ℓ(n)-2}, choose a random string r ← {0,1}^{ℓ(n)} and interpret m̂ := r||m as an element of Z_N. Output the ciphertext

$$c := [\hat{m}^e \mod N].$$

Dec: On input a private key sk = ⟨N, d⟩ and a ciphertext c ∈ Z^{*}_N, compute

$$\hat{m} := [c^d \mod N],$$

and output the $|| N || - \ell(n) - 2$ low-order bits of \hat{m} .

How'd we do?

Warning. When ℓ is too small, so that $\ell(n) = \mathcal{O}(\log n)$, then a brute-force search through all possible values of padding r can be carried out in $2^{\mathcal{O}(\log n)}$ time.

Remark. When the padding is as large as possible and m is just a single bit, then it is possible to prove security based on the RSA assumption.

Remark. In between the situation is not so clear. For certain ranges of ℓ we cannot prove security based on the RSA assumption. But no polynomial-time attacks are known either.

4 日 > 4 回 > 4 三 > 4 三 > 三 9 4 で