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ABSTRACT: In this paper we describe a method of teaching the Data Encryption Standard
algorithm in an undergraduate cryptology course. We present a simplified version of the
Data Encryption Standard algorithm with all parameters reduced as much as possible.
This makes the inner workings of the algorithm accessible to undergraduates. Once the
simplified algorithm has been explained to a class, it is easier to explain the real one. We
suggest class discussions and homework based on this simplified algorithm.
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1. INTRODUCTION

In 1973 and 1974, the National Bureau of Standards solicited data security sys-
tems from business and academia. International Business Machines Corporation
submitted the Data Encryption Standard algorithm (DES) and it was subse-
quently accepted and published in 1975 [4]. DES is widely used in business in
the United States; PIN numbers, phone conversations and many other types of
data are encrypted with DES.

Cryptology is becoming a popular undergraduate course in mathematics de-
partments. Current textbooks appropriate for an undergraduate course on cryp-
tology do not discuss DES [see 1, 3, 5]). There are two possible reasons for this.
The security of many popular cryptosystems is based on the difficulty of solv-
ing certain number theoretic problems. The problem which is most apparently
involved in breaking DES is not viewed to be as elegant as those behind other
cryptosystems like RSA, discrete log for finite fields and for elliptic curves, and
knapsack. The obvious way of trying to break DES requires finding simultaneous
solutions to many non-linear equations in many unknowns over Fy. The other
reason must be that the DES algorithm itself is very complicated and can not
be explained as neatly as the above-named cryptosystems. This is the problem
we will address in this paper.
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Below we will give a simplified version of the DES algorithm. The author
prepared this algorithm for an upper-divison undergraduate cryptology course
taken mostly by mathematics and computer science majors. This version is
meant to be educational as opposed to being a secure algorithm. It has similar
properties to DES with much smaller parameters. After describing this simplified
DES, we will explain how to expand the parameters to see how the the real DES
algorithm works.

The author has had success in the classroom using this method of explaining
DES. The simplified algorithm is presented on a handout as it is in sections 2
and 3. In parallel, we run through the algorithm in the encryption direction
with a chosen key and plaintext. The students work through this example in
the margins of the handout. For homework, the students are given a key and
ciphertext and are asked to find the plaintext by hand, in order for them to get
the flavor of the inner workings of DES. There will be more on this homework
assignment at the end of section 3

By the time the class gets to this algorithm, we have already discussed modular
arithmetic since there is addition modulo 2 in this algorithm. We have covered
elementary cryptosystems involving transposition and substitution ciphers since
the DES algorithm alternates these. We have discussed frequency analysis so
that the students understand the consequences of using the blocksize that DES
operates on. We have also covered running time analysis and have discussed P
and NP problems since solving many non-linear equations in many unknowns
over F, is a problem which is NP-hard. We discuss DES before public key
cryptography since public key cryptography can be used to exchange DES keys.

2. KEYS

For the simplified version of DES, two users have a shared, secret 10 bit key that
they have agreed upon ahead of time. From that key they make subkeys. Let
the agreed upon 10 bit key be (kok ...kg) where k; € {0,1}. There are two
given permutations, P10 = (2,4,1,6,3,9,0,8,7,5) and P8 = (5,2,6,3,7,4,9,8), and
a shifting sequence (1,2).

First apply P10 (which is only used once) to the key and get

(k2k4k1k5k3kgkgk3k7k5) — (80518283545586573339)

where ko = sq,...,ks = Sg. Break this string into two substrings consisting of
the first 5 and the last 5 bits and shift each substring to the left by 1, since 1 i8
the first number in the shifting sequence. So

(5051525354)(5586575859)
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DES 1 3. THE SIMPLIFIED ENCRYPTION ALGORITHM
:d P :
- j With this simplified DES, the plaintext messages are broken into blocks, each
key | an & bit string like (10111101). There are then 28 possible plaintext blocks. We
eys ' encrypt one block at a time. Identical blocks are encrypted identically for a given
e key.

Encryption is by the composition of five maps, /P! o Iy, 0@oIlg, o IP,
: which will be described below. All additions are bit-by-bit modulo 2 additions.
hat ; As an example

Let (10101)
two  § + (11001)
and = (01100).

This is the same as using XOR on every corresponding pair of bits.
There are three kinds of maps.

] i) The map IP is the initial permutation; it is (1,5,2,0,3,7,4,6). Let m; € {0,1}.
7 of 3 Then '

IP(mﬂm1m2m3m4m5m5m7) = (m1m5m2m0m3m7m4m6)

= (n0n1n2ﬂ3ﬂ4ﬂ5n6n7).
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We have TP~ =(3,0,2,4,6,1,7,5). So

IP'l(ngn1n2n3n4n5n6n7) = (n3n0n2n4n5n1n7n5) s
= (mgm1m2m3m4m5m5m7).

ii) The map © switches the first four bits with the last four bits;

O(momymamamamsmemy) = (mgmsmemymom1mams)-
Note that ©? is the trivial map, so ©-! = ©. The maps [P and © are each
called transposition maps since they simply permute the bits.
iii) Let us define IIr, where T is some arbitrary map (not necessarily one-to-one)

from 4 bit strings to 4 bit strings. We let
Mp(X, X') = (X + T(X"),X)

where X and X' are 4 bit strings. The map % is trivial, because applying
it twice is adding T(X') twice to X and modulo 2 that is the same as adding
(0000). So Ilz* = Ilp. As an example, say the string is (10111101) and T is
some function for which T(1101) = (1110). Then I7(10111101) = (01011101)

since (1011) + (1110) = (0101).
Let us describe the map T,. The input is a 4 bit number (n4n5n5n7) with
n; € {0,1}. We index them 4 through 7 because we apply T} to bits 4 through

7 when applying Iiz, to a string of 8 bits. Make a diagram

Ng
4

n4g TNs
neg N7

nr
ns

and add key 1 in the following way

neg + k13

ne+ ki ns+ ki
ng + kl,-,'.

n7+ k10
ne+kis nrt+kig

ns + k1,4

We will rename these 8 bits
Poo | Poo Po2 | Po3
P1o | P11 P12 P13

There are two given S-boxes, S[0]
rows and columns 0 to 3.

and S[1], shown below. We have labelled the
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0123 0123
071032 0701 2 3
113210 1201 3

SOl= 9 19913 SM=9513010
33132 312103

Consider (poopos) and (po1po2) as base-2 numbers between 0 and 3. In S-box
S[0] look in row (pgopo,3) and column (pg,1po2), and find the entry, which is a
number between 0 and 3. Write that number as a base 2 number (goq;). If
(Poopo,3) = (00) and (po,1po2) = (10) then we look in row 0 and column 2 and
find the entry 3 so (goq1) = (11).

Similarly in S-box S[1] look in row (p;op13) and column (p; 1p12) and find
the entry between 0 and 3. Write it as a base 2 number (gy¢3). Now concatenate
them and you have (gog1¢2q3), a 4 bit string. There is one more given permuta-
tion P4 = (1,3,2,0). Apply P4 and get (g1¢3g2g0). That is the output of the
map T1. So Ti(n4nsneny) = (q193g2qo). Recall that this is just part of doing
II7,. So if the string, during encryption, and after the initial permutation, is
(noningngnyngneny) then Iy, will take that to

(no + g1, 1 + g3, M2 + g2, N3 + Qo, T4, N5, Mg, 7).

T, is identical except that we use key 2 instead. The S[0], S[1] and P4 are
the same. It may seem unsafe to leave the last 4 bits alone, but recall © comes
between IIr, and Ilr,.

The map Il7 is called a substitution map since it replaces bits by bits, and does
not simply permute them. An encryption algorithm that alternates transposition
maps with substitution maps is called a product cipher. A pair of substitution
and transposition maps is called a round. This algorithm runs 2 rounds. Decryp-
tion is by (IP~1 o Il1, 0 @ o Ily, 0 IP)~!. Now recall that (fog)~! =g 1o fL.
So decryption is by P~ o Il, 0 © o Iz, o IP.

For homework, the students are told to decrypt the string (10100010) using
the key (0111111101) by hand. Then they are told to decode the first four bits
of the plaintext string to a letter and the second four bits to another letter
where we encode A — P in base 2, i.e. A = 0000, B = 0001, ... ,P = 1111.
The resulting plaintext message is ‘OK’. As a midway check, they are told that
after the application of @, that the string should be (00010011). Some of the
students implemented this algorlthrn as a computer program for both encryption
and decryption on their own.
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4. ANALYSIS OF SIMPLIFIED DES

Let us call the plaintext (pg...pr), and the ciphertext output (co...c7), that
one would get using the key (ko ... ks). Then each ¢; is a polynomial function f;
of the p;’s and the k;’s modulo 2. If the enemy has some pair of corresponding
plaintext and ciphertext, then he can try to solve for the key. The only unknowns
are the k;’s. With the key he could decrypt future ciphertext. There may be
several possible solutions, but cryptanalysis is often a process of narrowing down
the possibilities. In this case, we have 8 non-linear equations in 10 unknowns.
All of the permutations and additions are linear maps. The non-linearity comes
from the S-boxes. Let us consider how they operate. For clarity, let us rename

(P0,0aPO.l:PO,%PG,:}) = (a:b1 C:d) a.nd (Pl,Ospl,l,P1,2,P1,3) = (w! Ty, 2’). Then the
operation of the S-boxes can be computed with the following equations

go = abed + ab+ac+b+d

g = abcd + abd + ab+ac+ad+a+c+1

g = wryz +wry+wyz+wytwz+yz+w+r+z
@=wrzt+wyztwz+rz+yzt+tw+y

where all additions are modulo 2. Alternating the linear maps with these non-
linear maps leads to very complicated polynomial expressions for the ciphertext
bits. :

A polynomial equation in 10 unknowns over F; can have 2'° possible terms,
each with a coeficient of 0 or 1. On average then, one might expect the 8 equa-
tions to have 29 terms each. The interested student might be encouraged to try to
find these equations with a symbolic processor for a given plaintext/ciphertext
pair. He would undoubtedly give up at some time during the process if the
symbolic processor does not give up first.

At this point, one could ask the class to suggest and discuss various methods
of breaking this simplified DES. Here are a few suggestions in case the students
do not come up with them themselves.

1. If the enemy has several plaintext/ciphertext pairs, he could try to solve
the equations for the key.

2. If the enemy has several plaintext/ciphertext pairs, he could try all keys
and see which ones work.

3. If the enemy has several ciphertexts, he could decrypt using all possible keys
to see which give sensible plaintexts.

. If the enemy has several ciphertexts, he can do a frequency analysis.
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The class can discuss such methods again after the presentation of the parameters
of the real DES algorithm.

5. THE REAL DES

The actual DES encryption algorithm operates on blocks of plaintext that are
64 bits long and so there are 2% possible plaintext blocks. The encryption is by

IP7'ollp,000llp,000...000lly o IP.

So DES runs 16 rounds. The key is 56 bits long and comes with 8 extra parity-
check bits. The subkeys have 48 bits. So instead of permutations of length
10 and 8 for the keys they are of length 56 and 48. There are 16 subkeys
since there are 16 Ti's. The permutation of length 56 is used initially and the
permutation of length 48 is used 16 times to pick out the subkeys. The shifting
sequence is (1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1). The initial permutation IP is
a permutation of the 64 bits. Now instead of T; acting on (n4nsneny) it acts on
(n3z...ng3). The diagram that you put those in actually looks like

Ne3 | N3z N3z Tiz4 N35 | Nas
Nas | Nge T3ay Tigg N3g | N4

Nsg | Meo Me1 TMe2 a3 | a2

which has 8 rows and 6 columns, hence the 48 bit subkeys. Since there are 8
rows in the diagram, there are 8 S-boxes S[0], ...,S[7]. Each S-box has 4 rows
and 16 columns, since (ng3ngs) can represent 4 numbers and (n3angznaqnas) can
represent 16 numbers. The last part of the map 7; is a permutation of length
32 instead of 4, half the block length. All of the permutations and S-boxes are
available to the users and can also be found in [3].

There are four modes of operation on a DES chip. We have just described the
standard encryption mode or Electronic Code Book mode. It is the mode that
the other three are based on. For a description of all four modes see
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