Detecting Web Spam through Backward Propagation of Distrust

CS315-Web Search and Mining

Anti-Spam Lessons from Society

What would you do if you realize that you should not trust a member of your trust network?

Anti-Propagandistic Lessons for Web

- How do you deal with propaganda in real life?
- Backwards propagation of distrust
- The recommender of an untrustworthy message becomes untrustworthy
- Can you transfer this technique to the web?

An Anti-Propagandistic Algorithm

- Start from untrustworthy site s
 - $S = \{s\}$
- Using BFS for depth D do:
 - Find the set U of sites linking to sites in S
 - (using the Google API for up to 8 b-links/site)
 - Ignore blogs, directories, edu's
 - $S = S + U$
 - Find the bi-connected component BCC of S that includes s
- BCC shows multiple paths to boost the reputation of s
Backwards Propagation of Distrust

- Start from untrustworthy site s
- $S = \{s\}$
- Using BFS for depth D do:
 - Find the set U of sites linking to sites in S (using the Google API for up to B b-links/site).
 - Ignore blogs, directories, edu's.
 - $S = S + U$
- Find the bi-connected component BCC of S that includes s

BCC shows multiple paths to boost the reputation of s

BCC vs Periphery

- Since the BCC reveals multiple paths to boost the reputation of s, we expect it to contain a higher percentage of untrustworthy sites.
- The Periphery of the BCC on the other hand, should have significantly lower percentage of untrustworthy sites.

Explored neighborhoods

- The trustworthiness of starting site is a very good predictor for the trustworthiness of BCC sites.
- The BCC is significantly more predictive of untrustworthiness than the Periphery.

Evaluated Experimental Results