

1

## Equations of observer motion

$$
\begin{aligned}
& \text { Translation Rotation Depth } \\
& \left(T_{x}, T_{y}, T_{z}\right) \\
& \left(\mathbf{R}_{\mathrm{X}}, \mathbf{R}_{\mathbf{y}}, \mathbf{R}_{\mathbf{Z}}\right) \\
& \mathbf{Z}(\mathbf{x}, \mathbf{y})
\end{aligned}
$$

> Translational
> Component
> Rotational
> Component

Observer motion problem, revisited


From image motion, compute:

- Observer translation

$$
\left(\mathrm{T}_{\mathrm{x}} \mathrm{~T}_{\mathrm{y}} \mathrm{~T}_{\mathrm{z}}\right)
$$

- Observer rotation

$$
\left(\mathrm{R}_{\mathrm{x}} \mathrm{R}_{\mathrm{y}} \mathrm{R}_{\mathrm{z}}\right)
$$

- Depth at each location


## $\mathrm{Z}(\mathrm{x}, \mathrm{y})$

Observer undergoes both translation + rotation

2

## Longuet-Higgins \& Prazdny



- Along a depth discontinuity, velocity differences depend only on observer translation
- Velocity differences point to the focus of expansion


5


6

