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Learning handwritten digits
with a simple neural network
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“Deep” neural networks

early work extended simple neural networks to have multiple,
highly-connected hidden layers

if such networks could be trained, they would be much more
powerful than “shallow” neural nets

but generic multi-layer networks are extremely hard to train!!
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State-of-the-art recognition systems
are based on convolutional neural networks

Public databases of face images serve as benchmarks:

Labeled Faces in the Wild (LFW, http://vis-www.cs.umass.edu/Ifw)

> 13,000 images of celebrities, 5,749 different identities

YouTube Faces Database (YTF http://www.cs.tau.ac.il/~wolf/ytfaces)
3,425 videos, 1,595 different identities

Private face image datasets:

(Facebook) Social Face Classification dataset
4.4 million face photos, 4,030 different identities
(Google) 100-200 million face images, ~ 8 million different identities
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Convolutional Neural Networks (CNNs)
Fei-Fei Li, Justin Johnson, Serena Yeung (http://cs231n.stanford.edu/)
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*This network is running live in your browser

The Convolutional Neural Network in this example is classifying images live in your browser using Javascript, at about 10
milliseconds per image. It takes an input image and transforms it through a series of functions into class probabilities at the end.
The transformed representations in this visualization can be losely thought of as the activations of the neurons along the way.
The parameters of this function are learned with backpropagation on a dataset of (image, label) pairs. This particular network is
classifying CIFAR-10 images into one of 10 classes and was trained with ConvNetJS. Its exact architecture is [conv-relu-conv-
relu-pool]x3-fc-softmax, for a total of 17 layers and 7000 parameters. It uses 3x3 convolutions and 2x2 pooling regions. By the
end of the class, you will know exactly what all these numbers mean.
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Sample stages of a CNN
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CONV: “convolution” layer with weights that are learned
RELU: “rectified linear unit” applies an activation function
POOL: “pooling” selects maximum value in small neighborhoods

FC: “fully-connected” neural network

Convolutional layer

fully-connected
network:

locally-connected
network:

» early layers perform a convolution of their inputs

* multiple convolution operators (e.g. red & black)

* weights in convolution operators are learned

* convolution operators are typically small (e.g. 5x5)

3 convolutions with
3 (RGB) multiple operators
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ReLU & max pooling layers
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Adding a fully-connected neural net layer

Recognizing digits from the MNIST database with a CNN:
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LeCun, Bottou, Bengio, Haffner (1998)
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