Analysis of Motion

Measuring motion in biological vision systems

CS332 Visual Processing
Department of Computer Science
Wellesley College

Two-stage motion measurement

motion components \rightarrow 2D image motion
Movshon, Adelson, Gizzi \& Newsome

V1: high \% of cells selective for direction of motion (especially in layer that projects to MT) MT: high \% of cells selective for direction and speed of motion lesions in MT \rightarrow behavioral deficits in motion tasks

Testing with sine-wave "plaids"

 Moving plaid demo: www.georgemather.com
 Movshon et al. recorded responses of neurons in area MT to moving plaids with different component gratings

Logic behind the experiments...

(1)

(2)

(3)

Component cells measure perpendicular components of motion e.g. selective for vertical features moving right predicted responses: (1)
(3)

Pattern cells integrate motion components
e.g. selective for rightward motion of pattern
predicted responses: (1)
(2)
(3)

Movshon et al. observations:

- Cortical area V1:
all neurons behaved like component cells
- Cortical area MT:
layers 4 \& 6: component cells

Evidence for two-stage motion measurement!
layers $2,3,5$: pattern cells

- Perceptually, two components are not integrated if:
large difference in spatial frequency
large difference in speed
components have different stereo disparity

Integrating motion over the image

- integration along contours vs. over 2D areas:

Option 2: Smoothness assumption:

Compute a velocity field that:
(1) is consistent with local measurements of image motion (perpendicular components)
(2) has the least amount of variation possible

Pure Translation:

When is the smoothest velocity field correct?

Rotation of rigid objects in 2D and 3D:

true \& smoothest velocity field

true \& smoothest velocity field

initial motion measurements

When is it wrong?

kinetic depth effect Wallach \& O'Connell

motion illusions

Computing the smoothest velocity field

Find $\left(V_{x_{\mathrm{i}}}, V_{y_{\mathrm{i}}}\right)$ that minimize:

$$
\begin{aligned}
& \Sigma\left(\mathrm{V}_{\mathrm{x}_{\mathrm{i}} \mathrm{u}_{\mathrm{x}_{\mathrm{i}}}}+\mathrm{V}_{\left.\mathrm{y}_{\mathrm{i}} \mathrm{u}_{\mathrm{y}_{\mathrm{i}}}-\mathrm{V}_{\mathrm{i}}^{\perp}\right)^{2}+\lambda\left[\left(\mathrm{V}_{\mathrm{x}_{\mathrm{i}+1}}-\mathrm{V}_{\mathrm{x}_{\mathrm{i}}}\right)^{2}+\left(\mathrm{V}_{\mathrm{y}_{\mathrm{i}+1}}-\mathrm{V}_{\mathrm{y}_{\mathrm{i}}}\right)^{2}\right]}^{\text {deviation from image }}+\quad\right. \text { variation in velocity } \\
& \text { motion measurements }
\end{aligned}
$$

