Analysis of Motion

Computing the velocity field

CS332 Visual Processing

Department of Computer Science
Wellesley College

Option 1: Assume pure translation

"velocity space"

Measuring motion in one dimension

$\mathrm{V}_{\mathrm{x}}=$ velocity in x direction

- rightward movement: $\mathrm{V}_{\mathrm{x}}>0$
- leftward movement: $\mathrm{V}_{\mathrm{x}}<0$
- speed: $\left|\mathrm{V}_{\mathrm{x}}\right|$
- pixels/time step

$$
\mathrm{V}_{\mathrm{x}}=-\frac{\partial \mathrm{I} / \partial \mathrm{t}}{\partial \mathrm{I} / \partial \mathrm{x}}
$$

Measuring motion components in 2-D

(1) gradient of image intensity
$\nabla \mathrm{I}=(\partial \mathrm{I} / \partial \mathrm{x}, \partial \mathrm{I} / \partial \mathrm{y})$
(2) time derivative

$$
\partial \mathrm{I} / \partial \mathrm{t}
$$

(3) velocity along gradient:
v^{\perp}

- movement in direction of gradient:

$$
\mathbf{v}^{\perp}>0
$$

- movement opposite direction of gradient:

$$
\mathbf{v}^{\perp}<\mathbf{0} \quad \mathbf{v}^{\perp}=-\frac{\partial \mathrm{I} / \partial \mathrm{t}}{|\nabla \mathrm{I}|}=-\frac{\partial \mathrm{I} / \partial \mathrm{t}}{\left[(\partial \mathrm{I} / \partial \mathrm{x})^{2}+(\partial \mathrm{I} / \partial \mathrm{y})^{2}\right]^{1 / 2}}
$$

2-D velocities (V_{x}, V_{y}) consistent with v^{\perp}

All $\left(V_{x}, V_{y}\right)$ such that the component of $\left(V_{x}, V_{y}\right)$ in the direction of the gradient is \mathbf{v}^{\perp}
$\left(\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}\right)$: unit vector in direction of gradient
Use the dot product: $\quad\left(\mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{y}}\right) \cdot\left(\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}\right)=\mathbf{v}^{\perp}$

$$
\mathrm{V}_{\mathrm{x}} \mathrm{u}_{\mathrm{x}}+\mathrm{V}_{\mathrm{y}} \mathrm{u}_{\mathrm{y}}=\mathrm{v}^{\perp}
$$

In practice...

Previously...

New strategy:

Find $\left(V_{x}, V_{y}\right)$ that best fits all motion components
together
Find $\left(V_{x}, V_{y}\right)$ that minimizes:

$$
\sum\left(\mathrm{V}_{\mathrm{x}} \mathrm{u}_{\mathrm{x}}+\mathrm{V}_{\mathrm{y}} \mathrm{u}_{\mathrm{y}}-\mathrm{v}^{\perp}\right)^{2}
$$

Option 2: Smoothness assumption:

Compute a velocity field that:
(1) is consistent with local measurements of image motion (perpendicular components)
(2) has the least amount of variation possible

Pure Translation:

true \& smoothest velocity field

initial motion measurements

Computing the smoothest velocity field

Find $\left(V_{x_{\mathrm{i}}}, V_{y_{\mathrm{i}}}\right)$ that minimize:

$$
\Sigma\left(\mathrm{V}_{\mathrm{x}_{\mathrm{i}}} \mathrm{u}_{\mathrm{x}_{\mathrm{i}}}+\mathrm{V}_{\mathrm{y}_{\mathrm{i}}} \mathrm{u}_{\mathrm{y}_{\mathrm{i}}}-\mathrm{v}_{\mathrm{i}}^{\perp}\right)^{2}+\lambda\left[\left(\mathrm{V}_{\mathrm{x}_{\mathrm{i}+1}}-\mathrm{V}_{\mathrm{x}_{\mathrm{i}}}\right)^{2}+\left(\mathrm{V}_{\mathrm{y}_{\mathrm{i}+1}}-\mathrm{V}_{\mathrm{y}_{\mathrm{i}}}\right)^{2}\right]
$$

deviation from image $\quad+$ variation in velocity field motion measurements

