CS332 Visual Information Processing

Neural Processing
in the Ventral Visual Pathway
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V1 simple & complex cells
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Selectivity for stereo boundaries in V2

Von der Heydt & colleagues:

Some V2 cells are selective for
the orientation, contrast, and
side of border ownership of an
edge ... for edges defined by
luminance or stereo disparity

“anti-correlated” stereogram

Later, in area V4, neural responses to stereo disparity appear
to correspond more closely to perceived depth

1-4
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V2 and V4 responses to complex shapes
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Ventral visual pathway
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Progressing to higher areas along the ventral pathway:

* response latency increases

* receptive field size increases

* neurons become selective to more complex spatial patterns

* neural responses become more invariant to changes in
position, scale, pose, etc.




Face selective cells in IT cortex
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functional Magnetic Resonance Imaging (fMRI)

low spatial resolution
(~1 mm)

many images
(~ every 2 sec
for 5 mins)

* best spatial resolution available for
measuring neural activity noninvasively
in the whole human brain

* increased neural activity LA /
- increased local blood flow
- change in oxygenation of hemoglobin
- increase in MRI signal

* Blood Oxygenation Level Dependent (BOLD)
signal is an indirect measure of neural activity

e raw data: ~30,000 3D “voxels”
(each voxel: hundreds of thousands of neurons)
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fMRI experiment

functional images

~2s

activation map
~ 5 min

Fusiform Face Area (FFA) in human brain

The Journal of Neuroscience, June 1, 1997, 17(11):4302-4311

The Fusiform Face Area: A Module in Human Extrastriate Cortex
Specialized for Face Perception

Nancy Kanwisher,'2 Josh McDermott,'2 and Marvin M. Chun2?
1Department of Psychology, Harvard University, Cambridge, Massachusetts 02138, 2Massachusetts General Hospital Na ncy
NMR Center, Charlestown, Massachusetts 02129, and ®Department of Psychology, Yale University, ish
New Haven, Connecticut 06520-8205 Kanwisher
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Face patches in macaque IT cortex
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Targeting neurons in middle face patch
using single cell recording

Tsao et al. 2006
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The face patch network

combined microstimulation & fMRI to
measure connectivity of face patches

used single cell recording to
probe viewpoint dependence
of neural responses
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Other observations...

intact faces yield larger neural responses than scrambled or inverted faces

composite face effect: greater response for aligned vs. misaligned faces

a Aligned b Misaligned

IT neurons: response to whole face = sum of responses to parts

some face areas show large increase in neural responses when natural face
movements are added, e.g. facial expressions

human fMRI studies STSFA Bernstein & Yovel, 2015
dorsal pathway —
ventral pathwa

Face Form
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Rapid object detection/categorization
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1,200 images, half contain animals and half are “distractors”

respond as quickly as possible: does the image contain an animal or not?
* human subjects were ~80% correct

Matoc command

Simple visual forms,
edges, comners

It takes about 100 ms for visual signals
from the eye to reach the first cortical
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HMAX model of recognition

‘ ﬁ) ﬁo % @ 8 s4 model of processing in ventral stream for

rapid object categorization (100-150ms)

Cf() complex cells: more invariant
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simple cells: detect edges at different
positions, orientations, scales

n n “ [I early stages are
“hard-wired”




HMAX model of recognition, cont’d
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S2 units: combinations of C1 units at
different orientations with weights
that are learned

HMAX model of recognition, cont’d

* learning of wiring and weights for top-level
object classification by supervised learning

* wiring and weights between C and S units at
early levels are also learned

eg C1>S2,S2b C2->S3

* unsupervised learning of feature combinations
that appear most often in natural images

¢ good match to neural responses, V1 > IT

® ‘“neural tuning size” (number of C1 inputs to
each S2 unit) accounts for holistic effects
(composite-face, face-inversion, whole-part)

* good performance on natural images
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