Early visual processing

Hubel & Wiesel found 3 cell classes in V1: simple, complex, hypercomplex.

Neural processing enhances intensity changes in the image projected onto the retina.
V1 simple & complex cells

Simple cells respond best to edges or bars of a particular position, orientation, and sign of contrast.

Complex cells have larger receptive fields and are more tolerant to position.

A complex cell may "pool" inputs from many simple cells within receptive field.

Selectivity for stereo boundaries in V2

Von der Heydt & colleagues:

Some V2 cells are selective for the orientation, contrast, and *side of border ownership* of an edge... for edges defined by luminance or stereo disparity.

"Anti-correlated" stereogram

Later, in area V4, neural responses to stereo disparity appear to correspond more closely to perceived depth.
V2 and V4 responses to complex shapes

Hegde & Van Essen, 2007

Ventral visual pathway

Progressing to higher areas along the ventral pathway:
- response latency increases
- receptive field size increases
- neurons become selective to more complex spatial patterns
- neural responses become more invariant to changes in position, scale, pose, etc.
Face selective cells in IT cortex

Locations of face selective cells in IT, from single cell recordings

Desimone et al., 1984
Tsao & Livingstone, 2008

functional Magnetic Resonance Imaging (fMRI)

- low spatial resolution (~1 mm)
- many images (~every 2 sec for 5 mins)

- best spatial resolution available for measuring neural activity noninvasively in the whole human brain
- increased neural activity
 - increased local blood flow
 - change in oxygenation of hemoglobin
 - increase in MRI signal
- Blood Oxygenation Level Dependent (BOLD) signal is an indirect measure of neural activity
- raw data: ~30,000 3D “voxels”
 (each voxel: hundreds of thousands of neurons)
fMRI experiment

- **Functional images**
- **Time**: ~2s

Fusiform Face Area (FFA) in human brain

The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception

Nancy Kanwisher, 1,2 Josh McDermott, 1,2 and Marvin M. Chun 1,2

1 Department of Psychology, Harvard University, Cambridge, Massachusetts 02138, 2 Massachusetts General Hospital

The Journal of Neuroscience, June 1, 1997, 17(11):4004–4011
Face patches in macaque IT cortex

Tsao, Freiwald, Tootell, Livingstone, 2006

Targeting neurons in middle face patch using single cell recording

Tsao et al. 2006
The face patch network

combined microstimulation & fMRI to measure connectivity of face patches

used single cell recording to probe viewpoint dependence of neural responses

The face patch network

Transform Face Representation from Picture to Identity

8 Head Orientations

The face patch network

Other observations...

• intact faces yield larger neural responses than scrambled or inverted faces
• composite face effect: greater response for aligned vs. misaligned faces

 ![Aligned vs. Misaligned Faces](image)

• IT neurons: response to whole face = sum of responses to parts
• some face areas show large increase in neural responses when natural face movements are added, e.g. facial expressions

human fMRI studies

dorsal pathway
ventral pathway

Bernstein & Yovel, 2015
Rapid object detection/categorization

- 1,200 images, half contain animals and half are "distractors"
- respond as quickly as possible: does the image contain an animal or not?
- human subjects were ~80% correct

It takes about 100 ms for visual signals from the eye to reach the first cortical areas engaged in object/face recognition

Thorpe & Fabre-Thorpe (2001)

HMAX model of recognition

Simple cells: detect edges at different positions, orientations, scales

Complex cells: more invariant to feature position and size

early stages are "hard-wired"
HMAX model of recognition, cont’d

C2b, C3: pool inputs with MAX
S2b, S3, S4: combine more complex features with weights that are learned

C2 units: same selectivity as S2 units with more tolerance to position & size (pool S2 units of same selectivity but different positions and sizes)

S2 units: combinations of C1 units at different orientations with weights that are learned

HMAX model of recognition, cont’d

• learning of wiring and weights for top-level object classification by supervised learning

• wiring and weights between C and S units at early levels are also learned
e.g. C1 → S2, S2b C2 → S3

• unsupervised learning of feature combinations that appear most often in natural images

• good match to neural responses, V1 → IT

• “neural tuning size” (number of C1 inputs to each S2 unit) accounts for holistic effects (composite-face, face-inversion, whole-part)

• good performance on natural images