Analysis of Motion

Recovering observer motion

CS332 Visual Processing
Department of Computer Science
Wellesley College

Recovering 3D observer motion \& layout

Application: Automated driving systems

https://www.wired.com/story/darpa-grand-urban-challenge-self-driving-car/

Observer motion problem

From image motion, compute:

- observer translation

$$
\left(\mathrm{T}_{\mathrm{x}} \mathrm{~T}_{\mathrm{y}} \mathrm{~T}_{\mathrm{z}}\right)
$$

- observer rotation

$$
\left(R_{x} R_{y} R_{z}\right)
$$

- depth at every location

$$
\mathrm{Z}(\mathrm{x}, \mathrm{y})
$$

Human perception of heading

Warren \& colleagues
Human accuracy:
$1^{\circ}-2^{\circ}$ visual arc

Observer heading to the left or right of target on horizon?

Observer just translates toward FOE

But... simple strategy doesn't work if observer also rotates

Observer Translation + Rotation

display simulates observer translation

Still recover heading with high accuracy!

Observer motion problem, revisited

pure translation

pure rotation

translation + rotation

From image motion, compute:

- Observer translation

$$
\left(\mathrm{T}_{\mathrm{x}} \mathrm{~T}_{\mathrm{y}} \mathrm{~T}_{\mathrm{z}}\right)
$$

- Observer rotation

$$
\left(\mathrm{R}_{\mathrm{x}} \mathrm{R}_{\mathrm{y}} \mathrm{R}_{\mathrm{z}}\right)
$$

- Depth at every location

$$
\mathrm{Z}(\mathrm{x}, \mathrm{y})
$$

Observer undergoes both translation + rotation

Equations of observer motion

Translational component of velocity

$\mathbf{V}_{\mathbf{x}}=\left(-\mathrm{T}_{\mathbf{x}}+\mathbf{x} \mathrm{T}_{\mathrm{Z}}\right) / \mathbf{Z}$
$V_{y}=\left(-T_{y}+y_{z}\right) / Z$
Where is the FOE?
$x=\quad y=$

Example 1: $\mathrm{T}_{\mathrm{x}}=\mathrm{T}_{\mathrm{y}}=0 \quad \mathrm{~T}_{\mathrm{Z}}=1 \quad \mathrm{Z}=10$ everywhere $\mathrm{V}_{\mathrm{x}}=$ \qquad $V_{y}=$ \qquad

Sketch the velocity field

Example 2: $\mathrm{T}_{\mathrm{x}}=\mathrm{T}_{\mathrm{y}}=2 \quad \mathrm{~T}_{\mathrm{z}}=1 \quad \mathrm{Z}=10$ everywhere

$$
\mathrm{V}_{\mathrm{x}}=
$$

Longuet-Higgins \& Prazdny

- Along a depth discontinuity, velocity differences depend only on observer translation
- Velocity differences point to the focus of expansion

Rieger \& Lawton's algorithm

(1) At each image location, compute distribution of velocity
differences within neighborhood

Appearance of sample distributions:

(2) Find points with strongly oriented distribution, compute dominant direction

(3) Compute focus of expansion from intersection of dominant directions

