Analysis of Motion

Recovering observer motion

CS332 Visual Processing
Department of Computer Science
Wellesley College

Recovering 3D observer motion & layout

FOE: focus of expansion
Observer motion problem

From image motion, compute:

- Observer translation
 $$(T_x, T_y, T_z)$$
- Observer rotation
 $$(R_x, R_y, R_z)$$
- Depth at every location
 $$Z(x,y)$$
Human perception of heading

Warren & colleagues

Human accuracy:

1° - 2° visual arc

Observer heading to the left or right of target on horizon?

Observer just translates toward FOE

heading point

Directions of velocity vectors intersect at FOE

But... simple strategy doesn't work if observer also rotates
Observer Translation + Rotation

Display simulates observer translation

Observer rotates their eyes

Still recover heading with high accuracy

Observer motion problem, revisited

From image motion, compute:
- Observer translation
 \((T_x, T_y, T_z)\)
- Observer rotation
 \((R_x, R_y, R_z)\)
- Depth at every location
 \(Z(x,y)\)

Observer undergoes both translation + rotation
Equations of observer motion

<table>
<thead>
<tr>
<th>Translation</th>
<th>Rotation</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_x, T_y, T_z)</td>
<td>(R_x, R_y, R_z)</td>
<td>$Z(x,y)$</td>
</tr>
</tbody>
</table>

Translational Component

$$V_x = \frac{(-T_x + xT_z)}{Z} + R_{xy} - R_y(x^2+1) + R_{zy}$$

Rotational Component

$$V_y = \frac{(-T_y + yT_z)}{Z} + R_{x(y+1)} - R_yxy - R_{zx}$$

Where is the FOE?

$\begin{array}{c}
\text{x} = \\
\text{y} =
\end{array}$

Example 1: $T_x = 0$ $T_y = 0$ $T_z = 1$ $Z = 10$ everywhere

$V_x = $ $V_y = $

Sketch the velocity field

Example 2: $T_x = 2$ $T_y = 1$ $T_z = 1$ $Z = 10$ everywhere

$V_x = $ $V_y = $
Longuet-Higgins & Prazdny

- Along a depth discontinuity, velocity differences depend only on observer translation
- Velocity differences point to the focus of expansion

Rieger & Lawton’s algorithm

- At each image location, compute distribution of velocity differences within neighborhood

Appearance of sample distributions:

- Find points with strongly oriented distribution, compute dominant direction
- Compute focus of expansion from intersection of dominant directions