
1

1-1

Observer	motion	problem

From	image	motion,	compute:

• observer	translation

(Tx	 Ty Tz)

• observer	rotation

(Rx	 Ry Rz)

• depth	at	every	location

Z(x,	y)

1-2

Observer	just	translates	toward	FOE

Directions	of	
velocity	vectors	
intersect	at	FOE

But… simple	strategy	doesn’t	work	
if	observer	also	rotates

heading	point

1-3

Observer	motion	problem,	revisited

From	image	motion,	compute:

• Observer	translation

(Tx	 Ty	 Tz)

• Observer	rotation

(Rx Ry Rz)

• Depth	at	every	location

Z(x,y)

Observer	undergoes	both
translation	+	rotation

1-4

Equations	of	observer	motion



2

1-5

Longuet-Higgins	&	Prazdny

• Along	a	depth	discontinuity,	velocity	differences depend	
only	on	observer	translation

• Velocity	differences	point	to	the	focus	of	expansion

What	is	a	chair?

Alignment	methods

V viewed	object	(image)

Mi object	models

Tij allowable	transformations	between	viewed	
object	and	models

F measure	of	fit	between	V	and	the	expected	
appearance	of	model	Mi under	the	
transformation	Tij

GOAL:	Find	a	combination	of	Mi and	Tij that	
maximizes	the	fit	F

Find	an	object	model	and	geometric	transformation	that	
best	match the	viewed	image

Alignment	method:	recognition	process

(1) Find	best	transformation	Tij for	each	model	Mi
(optimizing	over	possible	views)

(2) Find	Miwhose	best	Tij gives	the	best	match	to	
image	V



3

Recognition	by	linear	combination	of	views
model	views

novel	view

LC2	is	a	linear	
combination of	
M1	and	M2	that	
best	matches	the	
novel	view

Predicting	object	appearance

I1 I2

I0 I0

two	known	views	
of	obelisk

XP1I0 =	α XP1I1 +	β XP1I2
XP2I0 =	α XP2I1 +	β XP2I2

Recognition	process:
(1)	compute	α,	β that	predict	P1	& P2
(2)	use	α,	β to	predict	other	points
(3)	evaluate	fit	of	model	to	image

Why	is	face	recognition	hard?

changing	pose changing	illumination

changing	expression
clutter
occlusion

aging

Eigenfaces for	recognition	(Turk	&	Pentland)
Principal	Components	Analysis	(PCA)

Goal: reduce	the	dimensionality	of	the	data	while	retaining	as	
much	information	as	possible	in	the	original	dataset

PCA	allows	us	to	compute	a	linear	transformation	that	maps	data	
from	a	high	dimensional	space	to	a	lower	dimensional	subspace



4

Eigenfaces for	recognition	(Turk	&	Pentland)

1-13

Perform	PCA on	a	large	set	of	training	
images,	to	create	a	set	of	eigenfaces,	
Ei(x,y),	that	span	the	data	set

First	components	capture	most	of	the	
variation	across	the	data	set,	later	
components	capture	subtle	variations

Each	face	image	F(x,y)	can	be	expressed	as	a	weighted	combination	of	the	
eigenfaces Ei(x,y):

Ψ(x,y):	average	face	(across	all	faces)

Ψ(x,y)

http://vismod.media.mit.edu/vismod/demos/facerec/basic.html

F(x,y)	=	Ψ(x,y)	+	Σi wi*Ei(x,y)

Representing	individual	faces
Each	face	image	F(x,y)	can	be	expressed	as	a	weighted	combination	of	the	
eigenfaces Ei(x,y):						

Recognition	process:
(1) Compute	weights	wi

for	novel	face	image

(2) Find	image	m	in	face	
database	with	most	
similar	weights,	e.g.

min (wi −wi
m

i=1

k

∑ )2

F(x,y)	=	Ψ(x,y)	+	Σi wi*Ei(x,y)

1-15

Face	detection:	Viola	&	Jones

Multiple	view-based	classifiers	based	on	simple	features	
that	best	discriminate	faces	vs.	non-faces

Most	discriminating	features	learned from	thousands	of	
samples	of	face	and	non-face	image	windows

Attentional mechanism:	
cascade	of	increasingly	
discriminating	classifiers	
improves	performance

1-16

Viola	&	Jones	use	simple	features
Use	simple	rectangle	features:	

Σ I(x,y)	in	gray	area	– Σ I(x,y)	in	white	area
within	24	x	24	image	sub-windows

• Initially	consider	160,000	potential						
features	per	sub-window!

• features	computed	very	efficiently

Which	features	best	distinguish	face	vs.	non-face?

Learnmost	discriminating	features	from	
thousands	of	samples	of	face	and	non-
face	image	windows



5

1-17

Learning	the	best	features
x =	image	window
f =	feature	
p =	+1	or	-1
q =	threshold

weak	classifier	using	one	feature:

(x1,w1,1)							 (xn,wn,0)

…

normalize	
weights

find	next	best	weak	classifier

use	classification	errors				
to	update	weights

n	training	samples,	
equal	weights,	
known	classes

t

final	classifier

~	200	features	yields	good	results	
for	“monolithic” classifier

AdaBoost

1-18

“Attentional cascade” of	increasingly
discriminating	classifiers

Early	classifiers	use	a	few	highly	
discriminating	features,	low	threshold

• 1st classifier	uses	two	features,				
removes	50%	non-face	windows

• later	classifiers	distinguish	harder	
examples

• Increases	efficiency

• Allows	use	of	many	more	features

à Cascade	of	38	classifiers,	using	~6000	features

Feature	based	vs.	holistic	processing
Tanaka	&	Simonyi	(2016),	Sinha	et	al.	(2006)

• composite	face	effect
• face	inversion	effect
• whole-part	effect

Feature	based	vs.	holistic	processing

• inversion	disrupts	recognition	of	
faces	more	than	other	objects

• prosopagnosics	do	not	show	effect

composite	face	effect

• identical	top	halves	seen	as	different	when	aligned	
with	different	bottom	halves

• when	misaligned,	top	halves	perceived	as	identical

face	inversion	effect

whole-part	effect

Identification	of	“studied”	
face	is	significantly	better	
in	whole	vs.	part	condition



6

The	power	of	averages,	Burton	et	al.	(2005)

average	
“texture”

average	
“shape”

PCA	performance

Human	recognition	of	average	faces
Burton	et	al.	(2005)

Performance:	shape-free	images

Performance:	texture	+	shape	images	

What	is	an	artificial	neural	network?

Network	of	simple	
neuron-like	

computing	elements	…	

…	that	can	learn to	associate	
inputs	with	desired	outputs

Computing	in	a	”typical”	neural	network	

How	does	each	unit	integrate	its	inputs	to	produce	an	output?

w0 • 1	+	w1 • I1 +	w2 •	I2 +	...	+	wn •	In > 0

I1

I2

w1

w2

H 1 or	0

•
•
•

+1
w0

sigmoid

sum	of	weighted	inputs	à sigmoid	function	à output	between	0	and	1	

activation



7

Learning	to	recognize	input	patterns
feedforward	processing

back-propagation algorithm	to	
learn	network	weights

network	weights	can	be	learned
from	training	examples

(map	inputs	to	correct	outputs)

back-propagation:
iterative	algorithm	progressively	reduces	
error	between	computed	and	desired	
output	until	performance	is	satisfactory
on	each	iteration:	
• compute	output	of	current	network	and	

assess	performance	
• compute	weight	adjustments	from	hidden	to	

output	layer	that	reduce	output	errors
• compute	weight	adjustments	from	input	to	

hidden	units	that	improve	hidden	layer	
• change	network	weights,	incorporating	a	

rate	parameter


