
From image motion, compute:

- observer translation

$$
\left(\mathrm{T}_{\mathrm{x}} \mathrm{~T}_{\mathrm{y}} \mathrm{~T}_{\mathrm{z}}\right)
$$

- observer rotation

$$
\left(\mathrm{R}_{\mathrm{x}} \mathrm{R}_{\mathrm{y}} \mathrm{R}_{\mathrm{z}}\right)
$$

- depth at every location Z(x, y)

Observer just translates toward FOE

Directions of velocity vectors intersect at FOE

But... simple strategy doesn't work if observer also rotates

Observer motion problem, revisited

pure translation

translation + rotation

pure rotation

From image motion, compute:

- Observer translation

$$
\left(\mathrm{T}_{\mathrm{x}} \mathrm{~T}_{\mathrm{y}} \mathrm{~T}_{\mathrm{z}}\right)
$$

- Observer rotation
$\left(R_{x} R_{y} R_{z}\right)$
- Depth at every location $Z(x, y)$

Observer undergoes both translation + rotation

Equations of observer motion

Translation $\left(T_{x}, T_{y}, T_{z}\right)$	$\begin{aligned} & \text { Rotation } \\ & \left(\mathbf{R}_{\mathbf{x}}, \mathbf{R}_{\mathbf{y}}, \mathbf{R}_{\mathrm{z}}\right) \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \mathbf{Z}(\mathbf{x}, \mathbf{y}) \end{aligned}$
$\begin{aligned} & \mathbf{V}_{\mathbf{x}}=\left(-\mathrm{T}_{\mathbf{x}}+\mathbf{x} \mathrm{T}_{\mathbf{Z}}\right) / \mathbf{Z} \\ & \mathbf{V}_{\mathbf{y}}=\left(-\mathrm{T}_{\mathbf{y}}+\mathbf{y} \mathrm{T}_{\mathrm{z}}\right) / \mathbf{Z} \end{aligned}++$	$\mathbf{R}_{\mathrm{X}} \mathrm{xy}-\mathrm{R}_{\mathbf{y}}\left(\mathrm{x}^{2}+1\right)+\mathrm{R}_{\mathrm{z}} \mathrm{y}$ $\mathbf{R}_{\mathrm{x}}\left(\mathrm{y}^{2}+1\right)-\mathrm{R}_{\mathbf{y}} \mathbf{x y}-\mathbf{R}_{\mathbf{z}} \mathrm{x}$	
Component		

Longuet-Higgins \& Prazdny

- Along a depth discontinuity, velocity differences depend only on observer translation
- Velocity differences point to the focus of expansion

Alignment methods

best match the viewed image
V viewed object (image)
$\mathrm{M}_{\mathrm{i}} \quad$ object models
$\mathrm{T}_{\mathrm{ij}} \quad$ allowable transformations between viewed object and models

F measure of fit between V and the expected appearance of model M_{i} under the transformation T_{ij}
GOAL: Find a combination of M_{i} and T_{ij} that maximizes the fit F

Alignment method: recognition process

(1) Find best transformation $T_{i j}$ for each model M_{i} (optimizing over possible views)
(2) Find M_{i} whose best $T_{i j}$ gives the best match to image V

Eigenfaces for recognition (Turk \& Pentland) Principal Components Analysis (PCA)

Goal: reduce the dimensionality of the data while retaining as much information as possible in the original dataset
PCA allows us to compute a linear transformation that maps data from a high dimensional space to a lower dimensional subspace

Eigenfaces for recognition (Turk \& Pentland)

Perform PCA on a large set of training images, to create a set of eigenfaces, $\mathrm{E}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})$, that span the data set

First components capture most of the variation across the data set, later components capture subtle variations
$\Psi(\mathrm{x}, \mathrm{y}):$ average face (across all faces)
http://vismod.media.mit.edu/vismod/demos/facerec/basic.html
Each face image $F(x, y)$ can be expressed as a weighted combination of the eigenfaces $E_{i}(x, y)$:

$$
\mathrm{F}(\mathrm{x}, \mathrm{y})=\Psi(\mathrm{x}, \mathrm{y})+\Sigma_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}{ }^{*} \mathrm{E}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})
$$

Face detection: Viola \& Jones

Multiple view-based classifiers based on simple features that best discriminate faces vs. non-faces

Most discriminating features learned from thousands of samples of face and non-face image windows

Attentional mechanism:

cascade of increasingly discriminating classifiers improves performance

Representing individual faces

Each face image $\mathrm{F}(\mathrm{x}, \mathrm{y})$ can be expressed as a weighted combination of the eigenfaces $\mathrm{E}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})$:

$$
\mathrm{F}(\mathrm{x}, \mathrm{y})=\Psi(\mathrm{x}, \mathrm{y})+\Sigma_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}{ }^{*} \mathrm{E}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})
$$

Recognition process:

(1) Compute weights w_{i} for novel face image
(2) Find image m in face database with most similar weights, e.g.
$\min \sum_{i=1}^{k}\left(w_{i}-w_{i}^{m}\right)^{2}$

Viola \& Jones use simple features

Use simple rectangle features:
$\sum \mathrm{I}(\mathrm{x}, \mathrm{y})$ in gray area $-\sum \mathrm{I}(\mathrm{x}, \mathrm{y})$ in white area
within 24×24 image sub-windows

- Initially consider 160,000 potential features per sub-window!
- features computed very efficiently

Which features best distinguish face vs. non-face?

Learn most discriminating features from thousands of samples of face and nonface image windows

Learning the best features

\(\left.$$
\begin{array}{l}\text { weak classifier using one feature: } \\
h(x, f, p, \theta)= \begin{cases}1 & \text { if } p f(x)<p \theta \\
0 & \text { otherwise }\end{cases} \\
\hline \begin{array}{l}f=\text { feage wind }\end{array}
$$

p=+1 or-1\end{array}\right\}\)| $\theta=$ threshold |
| :--- |

"Attentional cascade" of increasingly discriminating classifiers

Early classifiers use a few highly discriminating features, low threshold

- $1^{\text {st }}$ classifier uses two features, removes 50\% non-face windows

- later classifiers distinguish harder examples
- Increases efficiency
- Allows use of many more features
\rightarrow Cascade of 38 classifiers, using ~ 6000 features

The power of averages, Burton et al. (2005)

What is an artificial neural network?

Human recognition of average faces

Burton et al. (2005)

Performance: shape-free images

Performance: texture + shape images

-

How does each unit integrate its inputs to produce an output? sum of weighted inputs \rightarrow sigmoid function \rightarrow output between 0 and 1

