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Video:   MPG   Stereo   Correspondence   Algorithm  
 

[00:01]   [slide   1]   This   video   explores   an   algorithm   for   solving   the   stereo   correspondence   problem  
that   was   proposed   many   years   ago   by   David   Marr,   Tommy   Poggio,   and   Eric   Grimson.   We’ll  
refer   to   it   as   the   MPG   algorithm.   You’re   learning   about   this   algorithm   because   it’s   a   compelling  
example   of   the   design   of   a   computational   model   that   incorporates   many   aspects   of   human  
stereo   vision,   and   it   also   embodies   a   multi-resolution   approach   that’s   common   in   applications   of  
computer   vision   in   areas   like   stereo   and   motion.   
 

[00:35]   [slide   2]   These   are   the   properties   of   human   stereo   vision   that   were   enumerated   in   the  
last   video,   and   we’ll   start   our   introduction   to   the   algorithm   by   considering   the   bold-faced   items  
here   -   the   image   features   used   for   matching,   which   are   computed   at   multiple   scales,   and   how  
the   range   of   disparities   for   stereo   matching   varies   with   scale.   We’ll   then   add   vergence   eye  
movements   to   the   matching   process.   
 

[01:03]   [slide   3]   The   features   that   are   matched   between   the   left   and   right   images   are   the  
zero-crossings   in   the   result   of   convolving   the   images   with   Laplacian-of-Gaussian   operators   of  
different   size.   The   results   here   were   obtained   from   a   pair   of   stereo   images   of   a   simple   scene  
with   three   wooden   blocks.   Zero-crossings   arise   from   significant   intensity   changes   that   occur  
around   edges   in   a   scene,   like   object   boundaries   and   surface   markings.   They’re   likely   to   appear  
in   both   the   left   and   right   images,   and   their   locations   can   be   specified   very   precisely,   at   a  
resolution   that’s   even   higher   than   the   pixels   in   an   image.   The   goal   of   stereo   matching   here   is   to  
determine   which   contours   in   the   left   image   correspond   to   which   contours   in   the   right,   so   that   we  
can   measure   their   disparity   in   position   and   use   that   information   to   recover   the   depth   of   surfaces  
in   the   scene.   
 

[02:05]   Let’s   first   consider   the   coarse-scale   zero-crossings   at   the   top   -   they’re   obtained   with   a  
large   operator   size.   In   the   matching   process,   we’ll   take   each   zero-crossing   segment   from   the  
left   image,   like   the   one   circled   in   red   here,   jump   over   to   the   same   location   in   the   right   image,  
and   search   in   the   horizontal   direction   for   a   possible   matching   zero-crossing.   It’s   not   shown  
here,   but   the   zero-crossings   also   have   a   sign   -   the   convolution   values   change   from   negative   to  
positive,   or   positive   to   negative,   as   they   cross   zero,   depending   on   the   sign   of   contrast   of   the  
intensity   change   in   the   image.   We   can   set   a   rule   that   we   only   match   positive   zero-crossings   in  
the   left   image   to   positive   zero-crossings   in   the   right,   and   the   same   with   negative   zero-crossings.  
We   can   also   say   that   we’ll   only   match   contour   segments   that   have   a   similar   orientation   in   the  
two   images.   But   still,   when   we   go   searching   around   for   a   match   in   the   right   image,   there   may   be  
multiple   zero-crossings   of   the   same   sign   and   orientation   that   are   possible   matches,   so   we’ll   limit  
the   range   of   our   search   in   the   left   and   right   directions   to   reduce   the   number   of   possible   matches  
we   need   to   consider.   At   the   coarse   scale,   there’s   a   lot   of   smoothing   of   the   image,   so   there   are  
fewer   zero-crossings   to   match,   which   is   a   good   thing,   but   the   contours   don’t   follow   the   actual  
edges   in   the   scene   as   precisely,   so   we   only   compute   rough   disparities.   
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[03:42]   Now   consider   the   zero-crossings   derived   from   the   small   operator   size   such   as   the   one  
at   the   bottom.   Here   there’s   many   more   zero-crossing   contours,   so   when   we   take   a   contour   from  
the   left   image   and   search   for   a   possible   match   in   the   right,   we’ll   go   to   the   same   location,   but  
only   search   over   a   narrow   range   of   disparities.   At   the   small   scale   the   positions   of   the   contours  
follow   the   actual   edges   in   the   scene   more   precisely,   so   when   we   do   locate   a   matching  
zero-crossing,   we   can   specify   its   disparity   more   precisely.   So   to   summarize   so   far,   at   the   coarse  
scale   we’ll   be   able   to   compute   rough   disparities   over   a   larger   range,   and   at   the   fine   scale,   we  
can   compute   more   accurate   disparities,   but   only   over   a   smaller   range.   How   can   we   get   the   best  
of   both   worlds?   Through   communication   across   scales.   The   basic   idea   is   that   we’ll   use   the  
stereo   disparities   computed   at   the   coarse   scale   to   guide   where   we   search   for   matches   at   the  
smaller   scales.   For   example,   if   it   was   determined   at   the   coarse   scale,   that   the   object   boundary  
circled   in   red   is   shifted   far   to   the   left   in   the   right   image,   then   at   the   fine   scale,   we’ll   search  
around   an   area   in   the   right   image   that’s   also   shifted   far   to   the   left.   That’s   a   taste   of   how   multiple  
scales   will   be   used.   The   next   thing   we’ll   do   is   bring   in   the   idea   of   moving   the   eyes   around   the  
scene   to   further   expand   the   range   of   surface   depths   that   can   be   handled.   
 

[05:28]   [slide   4]   I’m   going   to   walk   through   a   sequence   of   slides   that   illustrate   how   the   algorithm  
builds   up   a   representation   of   the   depths   of   surfaces   in   a   complex   scene   that   has   a   large   range  
of   depth.   The   algorithm   does   this   by   moving   the   eyes   around   to   focus   on   different   depths.  
Imagine   a   3D   scene   with   a   stack   of   surfaces,   shown   in   the   upper   left   corner.   The   red   arrow  
shows   the   direction   the   viewer   is   looking.   The   bird’s   eye   view   is   shown   in   the   upper   right   corner.  
Imagine   that   the   observer   is   looking   at   a   random-dot   stereogram   constructed   from   this   scene  
that’s   displayed   on   a   computer   screen,   just   like   the   one   you’re   looking   at   on   this   slide.   In   the  
bird’s   eye   view,   the   computer   screen   is   shown   at   the   bottom   of   the   stack,   and   the   surfaces,   after  
the   observer   can   fuse   together   the   stereogram   and   perceive   the   surfaces,   the   observer   will   see  
them   as   coming   out   of   the   screen,   toward   them,   as   portrayed   in   the   diagram.   
 

[06:47]   [slide   5]   Here   I   added   colored   lines   to   the   stereogram,   indicating   where   the   border   of  
each   surface   is   located.   The   disparity   map   at   the   top   shows   the   amount   of   shift   in   position,   the  
stereo   disparity,   for   each   surface   in   the   scene.   For   example,   the   center   surface   has   a   disparity  
of   +30,   which   means   that   the   region   outlined   in   blue   in   the   center   of   the   stereogram,   is   shifted  
to   the   right   by   30   pixels   in   the   right   image   here   -   you   can   kind-of   see   that   if   you   look   back   and  
forth   between   the   two   images.   
 

[07:27]   Initially,   we’ll   say   that   the   eyes   are   focused   on   the   computer   screen,   at   the   point   shown  
with   the   red   dot   in   the   bird’s   eye   view,   where   the   two   lines   of   sight   meet.   The   pink   and   blue   bars  
around   the   red   dot   in   this   bird’s   eye   view,   they   are   meant   to   convey   that   there’s   only   a   limited  
range   of   depth   around   the   fixation   distance   where   the   left   and   right   images   can   be   fused  
together,   and   reveal   a   clear   surface   at   a   particular   depth.   The   pink   region   indicates   the   disparity  
range   that   can   be   handled   at   the   fine   scale,   and   the   blue   region   depicts   a   larger   range   of  
depths   that   could   be   considered   at   the   coarse   scale.   As   the   eyes   shift   their   focus   to   a   different  
depth,   this   range   of   fusible   depths   in   pink   and   blue,   will   move   with   the   eyes.   The   final   piece   of  
the   picture   is   the   evolving   depth   map   in   the   lower   right   corner.   At   the   outset,   the   eyes   are  
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focused   at   the   depth   of   the   computer   screen   that   contains   the   outer   surface,   so   the   outer  
surface   has   zero   disparity,   like   the   fixation   point,   and   the   eyes   can   fuse   together   the   dots   in   the  
left   and   right   images   at   the   finer   scale   and   see   a   clear   surface   at   the   depth   of   the   screen.   I  
depict   this   in   the   depth   map   with   the   same   solid   dark   gray   that   I   displayed   in   the   disparity   map  
in   the   outer   region.    At   this   point,   the   observer   has   no   idea   where   those   surfaces   are   in   depth   in  
the   middle   here,   so   I   portrayed   that   just   with   random   dots.   
 

[09:24]   [slide   6]   So   what   might   happen   next?   Imagine   that   the   viewer   now   moves   their   eyes   to  
focus   on   a   point   in   space   on   the   side   of   the   stereogram,   that’s   slightly   in   front   of   the   screen,  
shown   by   this   new   position   of   the   red   dot   and   new   lines   of   sight   from   the   eyes.   The   range   of  
depths   where   the   visual   system   can   fuse   the   images   together   has   also   moved   forward,   and   the  
first   step   of   the   stack   of   surfaces   is   now   within   a   range   that   can   be   fused   at   the   coarse   scale  
covered   by   the   blue   band,   but   it’s   not   within   range   of   fusion   for   the   fine   scale   shown   in   pink.  
Remember   that   at   the   coarse   scale,   we   only   get   a   rough   sense   of   where   surfaces   are   in   depth,  
and   I   portrayed   this   in   the   emerging   depth   map   as   a   blurry   area   around   that   first   step.   Also  
remember   that   stereo   disparities   depend   on   where   the   eyes   are   focused,   so   in   the   disparity  
map   at   the   top,   the   disparities   of   all   the   surfaces   have   now   changed   a   bit.   I   also   changed   the  
locations   of   the   colored   outlines   of   the   surfaces   on   the   stereogram   to   reflect   these   new  
disparities.   In   the   evolving   depth   map,   there’s   still   a   central   area   of   random   dots   here,   because  
these   central   surfaces   are   still   out   of   range   of   fusion.   So   again,   the   observer   has   no   idea   where  
they   are   in   depth.   Given   this   rough   idea   of   where   this   first   inner   surface   is   in   depth,   the   next  
action   by   the   stereo   system   might   be   to   move   the   eyes   a   little   closer   to   the   viewer   so   that   the  
depth   of   this   fuzzy   surface   becomes   more   clear.   
 

[11:28]   [slide   7]   Here,   in   the   next   step,   the   eyes   are   focused   on   a   location   right   on   that   surface,  
so   its   depth   is   now   within   range   that   can   be   fused   at   the   fine   scale   in   pink.   In   the   evolving   depth  
map,   I   now   show   that   inner   surface   as   a   uniform   gray   color   to   indicate   this.   Given   the  
movement   of   the   eyes   in   depth,   the   disparities   of   all   the   surfaces   again   shifted   slightly,   as  
conveyed   in   the   disparity   map   at   the   top,   and   the   colored   borders   of   the   surfaces   on   the  
stereogram   have   also   been   shifted   a   little.  
 

[12:12]   [slide   8]   Now   suppose   another   eye   movement   is   made   to   a   location   on   the   other   side   of  
the   image   that’s   even   closer   to   the   observer.   The   effect   of   this   new   eye   movement   is   shown   in  
this   next   slide.   Let’s   say   it’s   a   bit   further   forward   than   the   next   inner   surface   here,   so   the   new  
surface   is   within   a   range   of   disparity   that   can   be   fused   at   the   coarse   scale,   it   overlaps   the   blue  
region   there,   but   it’s   outside   the   range   that   can   be   fused   at   the   fine   scale.   So   I   again   depict   this  
in   the   evolving   depth   map   with   a   blurry   region.   The   disparities   changed   again   for   this   new  
position   of   the   eyes,   and   that’s   shown   both   in   the   disparity   map   at   the   top   and   reflected   in   the  
positions   of   the   colored   borders   of   the   surfaces   on   the   stereogram.   
 

[13:08]   [slide   9]   Given   this   rough   idea   of   where   this   particular   surface   is,   that’s   shown   fuzzy  
here,   maybe   the   next   step   would   be   to   move   the   eyes   further   away   a   little   bit,   onto   that   surface,  
so   that’s   now   a   clear   disparity.   Here’s   the   next   surface,   and   that   surface   is   now   within   range   for  
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matching   at   the   fine   scale,   and   that’s   depicted   by   this   light   gray   area   here.   Still   the   center   is   out  
of   range   of   fusion,   so   the   observer   has   no   idea   where   that   is   in   depth,   so   that’s   still   shown   as  
random   dots.   And   the   disparities   have   been   adjusted   in   the   disparity   map   and   the   positions   of  
the   surface   borders   have   also   been   changed.   The   viewer   at   this   point   might   figure   that   maybe  
that   stuff   in   the   center   is   even   closer   to   them,   they’re   seeing   a   pattern   here.   [slide   10]   So   let’s  
say   the   viewer   moves   their   eyes   once   more,   to   a   depth   that   now   puts   that   surface   in   range   that  
can   also   be   fused   by   the   fine   scale   here,   and   so   they   now   have   a   clear   impression   of   where   all  
the   surfaces   are.   We’ve   assumed   all   along   here   that   even   though   at   each   moment,   you   can  
only   fuse   a   certain   range   of   the   stereogram,   once   you   have   fused   an   area,   you’re   putting   that  
information   into   some   kind   of   a   memory,   that’s   what   this   depth   map   is,   and   that   persists   as   you  
then   fuse   more   and   more   of   the   pattern.   So   that’s   the   general   idea   of   how   we   can   build   up   a  
depth   map   for   a   scene   with   a   wide   range   of   depths,   using   a   matching   process   that   at   each  
moment,   can   only   match   left   and   right   features   over   a   narrow   range   of   depths   around   the  
fixation   distance.   
 

[15:30]   [slide   11]   How   can   these   ideas   be   built   into   an   algorithm   that   we   can   implement   in   a  
computer   vision   system,   that   matches   features   in   real   stereo   images.   We   hinted   at   this   earlier.  
The   MPG   stereo   algorithm   matches   zero-crossing   contours   at   multiple   scales.   At   the   coarse  
scale,   the   search   for   a   match   extends   over   a   larger   neighborhood,   and   the   disparities   computed  
at   that   scale   are   used   to   guide   the   matching   of   zero-crossings   at   the   fine   scale,   where   it   only  
searches   over   a   small   neighborhood.   
 

[16:05]   [slide   12]   First,   let’s   be   more   explicit   about   the   features   that   are   matched,   using   these  
stereo   images.   This   is   a   classic   stereo   image   pair   that’s   been   used   as   a   benchmark   for   testing  
many   stereo   algorithms,   because   the   researchers   also   provided   a   true   depth   map   of   the   scene,  
which   allows   the   results   of   stereo   processing   to   be   evaluated   in   a   rigorous   way.   I’ll   just   use   this  
scene   to   illustrate   the   image   features   for   matching   in   more   detail.   
 

[16:40]   [slide   13]   This   slide   shows   the   zero-crossings   derived   from   two   operator   sizes,   and   they  
look   different   from   what   you   saw   before.   We   said   earlier   that   we   only   match   zero-crossings   of  
the   same   sign.   The   white   contours   here   correspond   to   intensity   changes   that   go   from   dark   to  
light   as   you   move   from   left   to   right   across   the   image,   and   the   black   contours   are   zero-crossings  
where   the   intensity   changes   from   light   to   dark   across   an   edge.   The   other   thing   that’s   different   is  
that   there’s   something   missing.   The   horizontal   parts   of   the   contours   are   missing.   That’s  
because   we   can’t   directly   match   locations   along   horizontal   contours   if   we’re   just   searching   in  
the   horizontal   direction.   If   you   think   about   the   extended   edges   at   the   top   of   each   one   of   these  
pictures   here,   if   you   have   a   particular   location   of   the   left   image,   searching   in   a   small   region,   it’s  
impossible   to   say   where   the   matching   feature   is   on   the   right   -   all   of   these   points   along   that   edge  
look   exactly   the   same.   So   the   stereo   matching   process   only   tries   to   match   features   like   the  
zero-crossings   I   showed   here,   that   have   a   vertical   extent.   
 

[18:03]   The   general   matching   strategy   will   be   to   start   with   the   coarse   scale,   and   for   each  
zero-crossing   on   the   left,   search   within   a   limited   neighborhood   of   that   location   on   the   right,   to  
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find   a   matching   zero-crossing   that   has   a   similar   contrast,   and   we   can   look   for   a   similar  
orientation   as   well.   Suppose   that   for   this   white   contour   circled   in   red,   we   find   a   matching  
contour   on   the   right,   and   imagine   that   it’s   shifted   20   pixels   to   the   left   relative   to   the   location   of  
this   contour   in   the   left   image.   When   we’re   matching   features   at   the   fine   scale,   let’s   suppose   we  
want   to   find   a   match   for   a   zero-crossing   contour   in   the   same   region   of   the   left   image   here.   If   we  
searched   around   the   same   location   in   the   right   image,   the   correct   match   may   be   way   out   of  
range,   given   the   small   search   neighborhood   used   at   the   small   scale.   To   guide   the   search   at   the  
fine   scale,   the   algorithm   looks   in   the   same   region   at   the   coarse   scale,   to   find   the   nearest  
contour   that   was   matched   at   that   scale.   Suppose   this   is   the   nearest   contour,   and   we   recorded   a  
disparity   of   -20   pixels   for   that   location,   a   shift   of   20   pixels   to   the   left.   Then   when   searching   for   a  
match   at   the   fine   scale,   we’ll   start   the   search   at   a   location   that’s   20   pixels   to   the   left,   and   look   in  
a   neighborhood   around   this   shifted   location.   In   this   case,   this   new   search   area   actually   includes  
the   correct   matching   contour.   So   overall,   when   matching   contours   at   the   fine   scale,   we   use  
disparities   computed   at   the   coarse   scale   to   determine   where   to   start   the   search.   And   as  
zero-crossing   contours   are   matched   up   between   the   left   and   right   images,   the   algorithm   records  
the   computed   disparity   for   each   zero-crossing   contour.   [slide   14]   Here   are   some   results   of  
processing   a   pair   of   aerial   stereo   images   with   this   algorithm.   The   result   displays   the  
zero-crossings   that   were   matched,   with   the   final   disparity   coded   in   color.   Closer   surfaces   are  
displayed   at   the   yellow   end   of   the   color   spectrum   and   more   distant   surfaces,   like   the   ground,  
shown   in   blues.   
 

[20:40]   [slides   15-16]   To   help   you   get   a   more   concrete   feel   for   the   matching   process,   I’m   going  
to   present   a   simplified   version   of   the   algorithm   that   appeared   in   a   textbook   on   AI   by   Patrick  
Winston.   You’ll   be   able   to   hand   simulate   the   steps   of   this   algorithm.   I’ll   go   through   one   example  
here,   and   there’s   another   example   that   you’ll   complete   with   your   group   on   the   current  
assignment.   The   algorithm   is   described   in   words   here,   in   two   parts,   but   rather   than   reading   all  
these   words   with   no   pictures,   I’m   going   to   jump   to   a   visual   example   and   describe   the   steps   of  
the   algorithm   through   this   example.   When   you’re   doing   your   own   hand   simulation,   you’ll  
probably   want   to   refer   to   the   textual   description   as   you   go,   as   well.   
 

[21:33]   [slide   17]   Our   hand   simulation   uses   a   different   visual   representation   of   the   edges   we’re  
trying   to   match   between   the   left   and   right   images,   and   as   usual,   we’re   doing   things   in   one  
dimension   here.   The   numbers   on   the   horizontal   axes   indicate   image   position   -   we’re   looking   at  
a   really   itty   bitty   image   snippet   here.   The   blue   and   red   bars   mark   the   locations   of   zero-crossing  
segments   in   the   left   and   right   images,   and   in   this   particular   visualization,   they’re   both   overlaid  
on   the   same   axis.   I’m   just   going   to   refer   to   these   segments   as   edges.   The   blue   bars   are   edges  
from   the   left   image   and   the   red   bars   are   edges   from   the   right   image,   and   these   edges   appear   at  
different   positions   in   the   left   and   right   images   because   of   the   different   stereo   perspectives.   In  
the   matching   process,   for   each   blue   edge   in   the   left   image,   we’re   trying   to   figure   out   which   red  
edge   in   the   right   image   is   the   correct   match.   The   edges   in   the   top   row   represent   coarse   scale  
zero-crossings   that   were   derived   from   a   large   operator   size.   The   middle   and   bottom   rows   are  
two   copies   of   the   same   thing   -   these   are   the   fine-scale   zero-crossings   derived   from   a   small  
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operator   size.   Along   the   left   side,   w   refers   to   the   size   of   the   Laplacian-of-Gaussian   operator,   as  
it   was   described   in   our   introduction   to   edge   detection.   The   parameter   m   refers   to   the   search  
range   we’re   going   to   use   at   each   scale.   In   the   text   outline   of   the   algorithm,   this   quantity   is  
referred   to   as   the   matching   tolerance,   and   you   can   see   that   it’s   half   the   operator   size   in   this  
case.   
 

[23:34]   To   match   the   edges   at   the   coarse   scale,   the   first   step   is,   for   each   blue   edge   in   the   left  
image,   we   find   the   nearest   red   edge   in   the   right   image.   There   are   just   two   edges   in   the   left  
image,   and   these   green   arrows   show   the   nearest   edge   in   the   right   image.   The   next   step   is,   for  
each   red   edge   in   the   right   image,   find   the   nearest   blue   edge   in   the   left   image.   These   two  
dashed   arrows   show   the   nearest   neighbors   in   the   left   image   for   each   of   the   two   red   edges   in  
the   right.   The   next   step   of   the   algorithm   says,   for   each   pair   of   left   and   right   edges   that   are  
closest   neighbors   of   one   another,   determine   whether   their   disparity   in   position   is   within   the  
matching   tolerance   m.   Both   pairs   here   are   mutually   closest   edges   and   the   disparities   are   both  
within   the   matching   tolerance   of   4   for   the   coarse   scale.   So   we   accept   these   two   matches   and  
assign   an   initial   disparity   for   those   two   regions   of   the   image.   Disparity   refers   to   the   shift   in  
position   as   we   go   from   the   left   image   to   the   right   image,   so   it’s   +4   for   the   pair   on   the   left   and   -2  
for   the   pair   on   the   right.   
 

[25:12]   We   have   two   copies   of   the   fine-scale   edges   so   we   can   compare   what   happens   when   we  
use   the   coarse-scale   disparities   as   a   guide,   to   what   would   happen   if   we   don’t.   Let’s   jump   to   the  
bottom   and   see   what   happens   if   we   apply   the   same   strategy   that   we   just   used   at   the   top,  
ignoring   the   information   from   the   coarse   scale.   Again,   the   first   step   is   to   find   the   nearest   edge   in  
the   right   image   for   each   edge   in   the   left   image.   The   solid   green   arrows   here   complete   that   step.  
Then   we   do   the   second   step,   we   find   the   nearest   blue   edge   in   the   left   image   for   each   red   edge  
in   the   right   image.   The   dashed   arrows   here   show   the   results   of   this   step.   Finally,   as   before,   we  
look   for   pairs   of   red   and   blue   edges   that   are   closest   neighbors   of   one   another,   and   there   are  
two,   the   pair   at   locations   5   and   6,   and   the   pair   at   locations   15   and   16.   The   disparity   in   position  
for   those   pairs   is   within   the   matching   tolerance   of   2   for   the   small   scale,   so   we   accept   these   two  
matches   and   again   assign   a   disparity   to   tham,   so   that   disparity   is   -1   for   the   left   pair   and   +1   for  
the   right   pair.   But…   these   are   not   actually   correct   matches   for   this   scene.   We   know   from   the  
matches   at   the   coarse   scale,   that   stuff   on   the   left   side   of   the   image   really   has   a   disparity   around  
+4,   and   stuff   on   the   right   side   really   has   a   disparity   around   -2.   So   can   we   improve   on   the  
matching   of   fine-scale   features   by   taking   advantage   of   what   we   know   at   the   coarse   scale?   
 

[27:18]   Now   we’re   using   Part   2   of   the   text   description   of   the   algorithm,   which   is   a   bit   more  
involved.   The   first   step   is   to   consider   each   blue   edge   in   the   left   image,   and   for   each   of   those  
edges,   we   find   the   nearest   edge   at   the   coarse   scale   that   has   a   disparity   assigned   to   it   from   the  
previous   matching.   For   the   two   left   edges   on   the   left   half   of   the   image,   we   see   that   there   is   a  
matching   edge   from   the   coarse   scale   that   had   a   disparity   of   +4.   For   the   two   fine-scale   edges   on  
the   right   side   of   the   image,   their   nearest   match   at   the   coarse   scale   has   a   disparity   of   -2.   The  
next   step   is   to   offset   the   left   edges   at   the   fine   scale   by   that   disparity   that   was   found   at   the  
coarse   scale.   So   we’re   going   to   shift   the   first   two   left   edges   to   the   right   by   4   pixels   and   shift   the  



/

last   two   edges   to   the   left   by   2   pixels.   I   drew   dashed   blue   bars   at   the   new,   shifted   positions.   Now  
we   proceed   as   we   did   before.   We   find   pairs   of   edges   from   the   left   and   right   images   that   are  
mutually   closest   neighbors   of   one   another,   with   a   shift   in   position   that’s   within   the   matching  
tolerance   of   2   for   the   smaller   scale.   But   this   time,   we’re   going   to   match   the   offset   versions   of   the  
blue   bars   from   the   left   image.   So   we’re   matching   up   the   dashed   blue   cars   and   the   dashed   red  
bars.   This   results   in   4   pairs   of   matching   features,   shown   with   the   green   arrows   as   before.   
 

[29:25]   Let’s   scrutinize   what   we   did   so   far.   Consider   the   left   edge   at   location   2.   We   effectively  
used   the   disparity   at   the   coarse   scale   to   shift   the   region   where   we   started   searching   for   a   match  
in   the   right   image   there,   so   we   shifted   it   over   to   position   6   and   searched   around   there,   over   a  
small   neighborhood,   and   we   found   a   match   to   the   red   edge   at   position   5.   So   in   the   end   we’ll   say  
that   the   left   edge   at   position   2   matches   the   right   edge   at   position   5,   as   shown   with   the   solid  
purple   arrow.   The   next   edge   was   originally   at   location   6   here,   and   at   the   coarse   scale,   it   said  
the   disparities   in   that   region   are   +4,   so   we   shifted   our   region   where   we’re   going   to   start   our  
search,   over   to   location   10,   and   we   found   a   nearby   right   edge   at   location   9.   So   in   the   end   we  
can   say   that   this   bar   at   position   6   in   the   left   image   really   matches   with   this   red   edge   here   in   the  
right   image,   at   location   9.   Same   thing   for   the   other   examples.   The   left   edge   at   location   15,   we  
used   the   disparity   at   the   coarse   scale   to   start   our   search   at   location   13   instead,   and   we   found   a  
right   edge   at   position   12,   nearby,   so   we’re   going   to   say   that   this   left   edge   at   15   really   matches  
the   right   edge   at   position   12.   And   similar   for   the   last   example,   we’re   going   to   end   up   saying   that  
this   left   bar   at   location   18   really   matches   a   right   edge   at   location   16.  
 

[31:45]   [slide   19]   If   we   take   away   all   the   clutter,   we   end   up   with   final   matches   at   the   fine   scale  
between   these   pairs   of   edges   in   the   left   and   right   images,   with   the   final   disparities   shown   for  
each   one.   They   tell   us,   for   example,   that   the   disparity   on   the   left   side   of   the   image   is   really   +3,  
not   the   rough   disparity   of   +4   that   we   found   at   the   coarse   scale.   So   in   more   concrete   terms,   this  
is   an   example   of   how   you   can   use   information   across   scales   to   solve   the   stereo  
correspondence   problem.  
 

[32:22]   To   summarize,   we   explored   the   Marr-Poggio-Grimson   stereo   algorithm.   It’s   a  
multi-resolution,   feature-based   stereo   matching   algorithm   that   embodies   a   role   for   vergence   eye  
movements   and   multi-scale   processing   that   we   know   are   important   aspects   of   human   stereo  
vision.   It’s   been   implemented   and   tested   in   a   computer   vision   system,   and   we   also   described   a  
simplified,   but   very   explicit,   version   of   the   algorithm   that   you   can   hand   simulate,   which  
embodies   the   interactions   across   scale   that   are   a   key   element   of   the   original   algorithm.  
 


