
/

Video: Early Face Recognition Methods

[00:01] [slide 1] This second video introduces two early approaches to the computer recognition
of faces that had a strong influence in the field. The first is where it all began, with Takeo
Kanade, who built the first end-to-end automated face recognition system around the time I was
graduating from high school, and the second is a method proposed by Turk and Pentland that
goes by the name of “Eigenfaces.”

[00:27] Takeo Kanade went on to be a giant in the field of computer vision, and a photo of him
appears in the image in the bottom left corner, highlighted with the red box. The image shows
the results of a later system he built for detecting faces in an image. For his PhD thesis at Kyoto
University in 1973, he built a system that started with a digital image. He built his own digitizer
to scan in images that were 140x200 pixels and had 32 shades of gray, which was a large
image in those days. He processed the images to find edges, as shown in the upper right
corner. The system then applied lots of special purpose algorithms to locate particular features
in the image like certain points on the eyes, nose, mouth, top of the head, boundaries of the
face, and so on. About 40 geometric quantities were then computed from these features. These
quantities are shown on the cartoon face in the bottom right corner, and they included ratios of
distances between feature points, and angles like the orientation of the jaw line. A vector of all
these geometric measurements served as a signature to identify an individual person, which
could be used to recognize that person in a new image. Why did he use relative distances
rather than absolute distances, for these geometric features? There could be variation in the
size of the face in the image, and relative distances enabled the system to handle changes in
scale.

[02:16] This was quite a technical feat at the time - he constructed a database of 800
images of 20 different people, and his system recognized people correctly about 75% of the
time. This general approach has been used in many face recognition systems in the years
since. [slide 2] An early version of the system became quite famous and was featured in a
public attraction at the 1970 World Expo held in Osaka, Japan. In advance, Kanade
scanned photos of a lot of famous people like Marilyn Monroe, JFK, and Winston Churchill,
and so on, and he analyzed these photos to get a representation of their geometric features.
At a booth at the Expo, he took a photo of each visitor, analyzed it to compute the geometric
features for this new person, and compared it to those of the famous people to find who was
the best fit, for example was the person a “Winston Churchill type,” and the visitors were
given a souvenir photograph of their “doppelganger. ”

[03:30] [slide 3] Continuing our tour of early approaches to face recognition in computer
vision, we’ll explore a classic approach championed by Turk and Pentland in the early 90s -
it’s known as the Eigenface approach, and it’s based on principal components analysis that
some of you may be familiar with. At some level, we think of an image as a two-dimensional
thing, but we can also think of an image as a very high-dimensional thing, where each
image pixel is a dimension that can take on a range of values corresponding to the

/

brightness at that pixel. Much of the information stored in individual pixels may be
redundant, so for the purpose of representing the image for recognition, it would be nice if
we could take this very high-dimensional data, and map it onto a lower dimensional space
that removes a lot of the redundancy that exists in an image. Effectively we’re creating a
more compact representation of face images that still preserves the essential information
content that distinguishes different individuals. PCA is one technique that can be used to
construct this lower-dimensional representation.

[04:50] To provide some intuition about the method, we’ll start with a very simple example.
Imagine that you take lots of images and measure the brightness at two specific pixels that
are close to one another, like the two red pixels in the image snippet in the middle. Then
across all the images, you plot all combinations of the two brightnesses that you measured.
If the pixels were nearby, chances are they’re highly correlated, giving rise to a plot like the
one shown in the lower right corner. For all the data points here, the brightnesses of pixels 1
and 2 from the same image, are similar to one another, which you’d expect in typical natural
images. Most of the spread in this data occurs along the direction of the red line here on the
graph. That red line is the direction of the first principal component, it’s the direction that
captures the most variation in the data. So if you want to capture what’s most important in
these two pixels, you could take each point that’s initially defined by the two separate pixel
values, and project it onto this one dimension in red, and just store one value for each pair,
which is the location of the projection along this direction of the first component. There is
variation in the data in the direction perpendicular to the first component, and that’s captured
in the second principal component that’s shown in green here. But for the task that you’re
using the information for, it may be adequate just to preserve information about where the
pair of pixels lie along the first component. So we reduced two dimensions of data to one.

[06:53] [slide 4] Applying PCA to images starts with a training set of images, like this sample
set of face images from the Yale face database. A training set typically contains multiple
images of each person that may have some variation, and the images are assumed to be
aligned and cropped so they all have similar size and pose, and they have a simple
background.

[07:20] [slide 5] To prepare the image data for PCA, we follow the three steps described
here. First, for each image like the one shown enlarged here, we take each of the columns
and lay them out end-to-end in one long column vector, like this. The length of this vector is
the total number of pixels in the image, rows times columns, which I denote by M here. Then
we place the column vectors generated from each image in the training set side-by-side in a
large matrix, like this. This matrix has M rows and N columns storing each of the N images
in the dataset. The last step is to compute an average face by taking an average of all the
images in an element-by-element way, so each location of the matrix stores the average of
all the brightnesses measured at that location, across all the images. We create a long
column vector for this average face and subtract it from each column of this data matrix
being constructed. Then we’re set to run PCA.

/

[08:44] [slide 6] Here’s our image data matrix again, that will be the input for PCA. The
algorithm computes the eigenvectors of a covariance matrix computed from the data. I won’t
be going into the mathematical details here, because they’re not essential to understanding
how we’re using PCA to represent face images, but these are terms that may be familiar to
you if you’ve taken a linear algebra course, or an advanced statistics course. Each
eigenvector is a principal component of the data, it’s a vector of M elements like the columns
of the data matrix, and we’re going to select K principal components, where K is typically
much smaller than the number of images N. The first principal component, which is stored in
the first column in this resulting matrix, captures the direction of largest variation in the input
data. The second component captures the direction of next largest variation in the data. This
is analogous to the red and green directions of variation for the simple two-dimensional data
that we started with. We can visualize each principal component as an image, by dividing up
the long column vector into individual columns and stacking them side-by-side as an image.
For the Yale training set, the first principal component looks like this. It vaguely resembles a
face, although it looks a little creepy. Turk and Pentland referred to these as eigenfaces
because of their origin and how they’re computed.

[10:35] [slide 7] How are these principal components, or eigenfaces, used to represent face
images in a database, and how do they enable recognition of new face images? This picture
shows an array of eigenfaces created from a different training set. In the upper left corner is
the average face, where again, the brightness at each location is the average of all the
brightnesses at that same location across the entire stack of images. This average was
generated from a database where each image had a dark background, which is why the
background is in black here. In preparation for PCA, this average face was subtracted from
each image in the training set. To the right of the average face is the first eigenface, and
that’s followed by the second and third eigenfaces along that first row. And the next rows
contain later eigenfaces, in sequence, from left to right, top to bottom. The early components
capture most of the variation across the dataset, and later components capture more subtle
variations between face images. How do we use these components to represent an
individual face image? For each image in the database, we compute a set of weights, one
for each eigenface. The image, denoted here as F(x,y) is then expressed as a sum of the
average face plus a weighted combination of the eigenfaces. Here, the weights are denoted
by wi and the eigenfaces are E(x,y), which is also indexed by i. So a particular face is
represented as the sum of the average plus a little bit of the first eigenface, plus a little bit of
the second eigenface, and so on, and the weighted components are added together in an
element-by-element way.

[12:58] Look for a moment at the average face in the upper left corner and the first
eigenface next to it. This eigenface has a fairly uniform dark region over the extent of the
face area. An individual face will have a particular weight associated with this first eigenface,
and this weight could be positive or negative. The combination alone of the average face
with some amount of this eigenface effectively would lighten or darken the skin tone. Other

/

eigenfaces lower down have face-like features such as the beard on the far right of the
second row. A person who really has a beard would probably have a large weight
associated with this eigenface. Adding together these eigenfaces with different weights
would produce different faces, capturing the variation that exists in the particular training set.

[14:07] [slide 8] This last slide illustrates the weighted sum in a slightly different way, using
the eigenfaces generated from yet another training set. Here we have a particular face
image from the database shown at the top, and the set of eigenfaces are arranged along a
row at the bottom, and this face image is represented as the sum of the mean or average
face, plus weight w1 times the first eigenface, plus weight w2 times the second eigenface,
and so on, down to weight k times the kth eigenface. As you can see here, there are these k
weights, one for each of the k eigenfaces. Given the eigenfaces, computing these weights
for each image in the database is a direct calculation involving a matrix multiplication. You
can think of the set of weights associated with a particular image as a signature that
captures that image. k is a small number compared to the M pixels in the original image - k
might be about 25 for a smallish database of a few hundred face images. So each image is
represented by a set of k weights rather than representing it by its original M pixels. So it’s a
much more compact representation.

[15:44] Now, given a new image to recognize, the first step in the recognition process is to
compute a set of weights for the new face, using the eigenfaces. We can then search
through the sets of weights for our known individuals in the database, to find the one that
yields the closest match. There are different metrics we can use to compare two sets of
weights, just like there were different measures of similarity that we could use for the
matching process in stereo or motion. The simplest metric is euclidean distance, which is
shown in the bottom right corner here. i is the index for each weight, and m refers to a
sample individual in the database, and we measure how different are two sets of weights by
taking the sum of the squared differences between the corresponding weights. This gives us
a way to find identity by selecting the individual in the database whose weights minimize this
difference, which is the individual whose signature weights are closest to the weights
computed for the new face image.

That’s the Eigenfaces approach, and it’s still used today for some applications of
recognition. To see results, you’ll be exploring the application of this approach to the Yale
face database in your next assignment.

