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Video:   Early   Face   Recognition   Methods  
 
[00:01]   [slide   1]   This   second   video   introduces   two   early   approaches   to   the   computer   recognition  
of   faces   that   had   a   strong   influence   in   the   field.   The   first   is   where   it   all   began,   with   Takeo  
Kanade,   who   built   the   first   end-to-end   automated   face   recognition   system   around   the   time   I   was  
graduating   from   high   school,   and   the   second   is   a   method   proposed   by   Turk   and   Pentland   that  
goes   by   the   name   of   “Eigenfaces.”   
 

[00:27]   Takeo   Kanade   went   on   to   be   a   giant   in   the   field   of   computer   vision,   and   a   photo   of   him  
appears   in   the   image   in   the   bottom   left   corner,   highlighted   with   the   red   box.   The   image   shows  
the   results   of   a   later   system   he   built   for   detecting   faces   in   an   image.   For   his   PhD   thesis   at   Kyoto  
University   in   1973,   he   built   a   system   that   started   with   a   digital   image.   He   built   his   own   digitizer  
to   scan   in   images   that   were   140x200   pixels   and   had   32   shades   of   gray,   which   was   a   large  
image   in   those   days.   He   processed   the   images   to   find   edges,   as   shown   in   the   upper   right  
corner.   The   system   then   applied   lots   of   special   purpose   algorithms   to   locate   particular   features  
in   the   image   like   certain   points   on   the   eyes,   nose,   mouth,   top   of   the   head,   boundaries   of   the  
face,   and   so   on.   About   40   geometric   quantities   were   then   computed   from   these   features.   These  
quantities   are   shown   on   the   cartoon   face   in   the   bottom   right   corner,   and   they   included   ratios   of  
distances   between   feature   points,   and   angles   like   the   orientation   of   the   jaw   line.   A   vector   of   all  
these   geometric   measurements   served   as   a   signature   to   identify   an   individual   person,   which  
could   be   used   to   recognize   that   person   in   a   new   image.   Why   did   he   use   relative   distances  
rather   than   absolute   distances,   for   these   geometric   features?   There   could   be   variation   in   the  
size   of   the   face   in   the   image,   and   relative   distances   enabled   the   system   to   handle   changes   in  
scale.   
 

[02:16]   This   was   quite   a   technical   feat   at   the   time   -   he   constructed   a   database   of   800  
images   of   20   different   people,   and   his   system   recognized   people   correctly   about   75%   of   the  
time.   This   general   approach   has   been   used   in   many   face   recognition   systems   in   the   years  
since.   [slide   2]   An   early   version   of   the   system   became   quite   famous   and   was   featured   in   a  
public   attraction   at   the   1970   World   Expo   held   in   Osaka,   Japan.   In   advance,   Kanade  
scanned   photos   of   a   lot   of   famous   people   like   Marilyn   Monroe,   JFK,   and   Winston   Churchill,  
and   so   on,   and   he   analyzed   these   photos   to   get   a   representation   of   their   geometric   features.  
At   a   booth   at   the   Expo,   he   took   a   photo   of   each   visitor,   analyzed   it   to   compute   the   geometric  
features   for   this   new   person,   and   compared   it   to   those   of   the   famous   people   to   find   who   was  
the   best   fit,   for   example   was   the   person   a   “Winston   Churchill   type,”   and   the   visitors   were  
given   a   souvenir   photograph   of   their   “doppelganger.   ”  
 

[03:30]   [slide   3]   Continuing   our   tour   of   early   approaches   to   face   recognition   in   computer  
vision,   we’ll   explore   a   classic   approach   championed   by   Turk   and   Pentland   in   the   early   90s   -  
it’s   known   as   the   Eigenface   approach,   and   it’s   based   on   principal   components   analysis   that  
some   of   you   may   be   familiar   with.   At   some   level,   we   think   of   an   image   as   a   two-dimensional  
thing,   but   we   can   also   think   of   an   image   as   a   very   high-dimensional   thing,   where   each  
image   pixel   is   a   dimension   that   can   take   on   a   range   of   values   corresponding   to   the  
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brightness   at   that   pixel.   Much   of   the   information   stored   in   individual   pixels   may   be  
redundant,   so   for   the   purpose   of   representing   the   image   for   recognition,   it   would   be   nice   if  
we   could   take   this   very   high-dimensional   data,   and   map   it   onto   a   lower   dimensional   space  
that   removes   a   lot   of   the   redundancy   that   exists   in   an   image.   Effectively   we’re   creating   a  
more   compact   representation   of   face   images   that   still   preserves   the   essential   information  
content   that   distinguishes   different   individuals.   PCA   is   one   technique   that   can   be   used   to  
construct   this   lower-dimensional   representation.   
 

[04:50]   To   provide   some   intuition   about   the   method,   we’ll   start   with   a   very   simple   example.  
Imagine   that   you   take   lots   of   images   and   measure   the   brightness   at   two   specific   pixels   that  
are   close   to   one   another,   like   the   two   red   pixels   in   the   image   snippet   in   the   middle.   Then  
across   all   the   images,   you   plot   all   combinations   of   the   two   brightnesses   that   you   measured.  
If   the   pixels   were   nearby,   chances   are   they’re   highly   correlated,   giving   rise   to   a   plot   like   the  
one   shown   in   the   lower   right   corner.   For   all   the   data   points   here,   the   brightnesses   of   pixels   1  
and   2   from   the   same   image,   are   similar   to   one   another,   which   you’d   expect   in   typical   natural  
images.   Most   of   the   spread   in   this   data   occurs   along   the   direction   of   the   red   line   here   on   the  
graph.   That   red   line   is   the   direction   of   the   first   principal   component,   it’s   the   direction   that  
captures   the   most   variation   in   the   data.   So   if   you   want   to   capture   what’s   most   important   in  
these   two   pixels,   you   could   take   each   point   that’s   initially   defined   by   the   two   separate   pixel  
values,   and   project   it   onto   this   one   dimension   in   red,   and   just   store   one   value   for   each   pair,  
which   is   the   location   of   the   projection   along   this   direction   of   the   first   component.   There   is  
variation   in   the   data   in   the   direction   perpendicular   to   the   first   component,   and   that’s   captured  
in   the   second   principal   component   that’s   shown   in   green   here.   But   for   the   task   that   you’re  
using   the   information   for,   it   may   be   adequate   just   to   preserve   information   about   where   the  
pair   of   pixels   lie   along   the   first   component.   So   we   reduced   two   dimensions   of   data   to   one.   
 

[06:53]   [slide   4]   Applying   PCA   to   images   starts   with   a   training   set   of   images,   like   this   sample  
set   of   face   images   from   the   Yale   face   database.   A   training   set   typically   contains   multiple  
images   of   each   person   that   may   have   some   variation,   and   the   images   are   assumed   to   be  
aligned   and   cropped   so   they   all   have   similar   size   and   pose,   and   they   have   a   simple  
background.   
 

[07:20]   [slide   5]   To   prepare   the   image   data   for   PCA,   we   follow   the   three   steps   described  
here.   First,   for   each   image   like   the   one   shown   enlarged   here,   we   take   each   of   the   columns  
and   lay   them   out   end-to-end   in   one   long   column   vector,   like   this.   The   length   of   this   vector   is  
the   total   number   of   pixels   in   the   image,   rows   times   columns,   which   I   denote   by   M   here.   Then  
we   place   the   column   vectors   generated   from   each   image   in   the   training   set   side-by-side   in   a  
large   matrix,   like   this.   This   matrix   has   M   rows   and   N   columns   storing   each   of   the   N   images  
in   the   dataset.   The   last   step   is   to   compute   an   average   face   by   taking   an   average   of   all   the  
images   in   an   element-by-element   way,   so   each   location   of   the   matrix   stores   the   average   of  
all   the   brightnesses   measured   at   that   location,   across   all   the   images.   We   create   a   long  
column   vector   for   this   average   face   and   subtract   it   from   each   column   of   this   data   matrix  
being   constructed.   Then   we’re   set   to   run   PCA.   
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[08:44]   [slide   6]   Here’s   our   image   data   matrix   again,   that   will   be   the   input   for   PCA.   The  
algorithm   computes   the   eigenvectors   of   a   covariance   matrix   computed   from   the   data.   I   won’t  
be   going   into   the   mathematical   details   here,   because   they’re   not   essential   to   understanding  
how   we’re   using   PCA   to   represent   face   images,   but   these   are   terms   that   may   be   familiar   to  
you   if   you’ve   taken   a   linear   algebra   course,   or   an   advanced   statistics   course.   Each  
eigenvector   is   a   principal   component   of   the   data,   it’s   a   vector   of   M   elements   like   the   columns  
of   the   data   matrix,   and   we’re   going   to   select   K   principal   components,   where   K   is   typically  
much   smaller   than   the   number   of   images   N.   The   first   principal   component,   which   is   stored   in  
the   first   column   in   this   resulting   matrix,   captures   the   direction   of   largest   variation   in   the   input  
data.   The   second   component   captures   the   direction   of   next   largest   variation   in   the   data.   This  
is   analogous   to   the   red   and   green   directions   of   variation   for   the   simple   two-dimensional   data  
that   we   started   with.   We   can   visualize   each   principal   component   as   an   image,   by   dividing   up  
the   long   column   vector   into   individual   columns   and   stacking   them   side-by-side   as   an   image.  
For   the   Yale   training   set,   the   first   principal   component   looks   like   this.   It   vaguely   resembles   a  
face,   although   it   looks   a   little   creepy.   Turk   and   Pentland   referred   to   these   as   eigenfaces  
because   of   their   origin   and   how   they’re   computed.  
 

[10:35]   [slide   7]   How   are   these   principal   components,   or   eigenfaces,   used   to   represent   face  
images   in   a   database,   and   how   do   they   enable   recognition   of   new   face   images?   This   picture  
shows   an   array   of   eigenfaces   created   from   a   different   training   set.   In   the   upper   left   corner   is  
the   average   face,   where   again,   the   brightness   at   each   location   is   the   average   of   all   the  
brightnesses   at   that   same   location   across   the   entire   stack   of   images.   This   average   was  
generated   from   a   database   where   each   image   had   a   dark   background,   which   is   why   the  
background   is   in   black   here.   In   preparation   for   PCA,   this   average   face   was   subtracted   from  
each   image   in   the   training   set.   To   the   right   of   the   average   face   is   the   first   eigenface,   and  
that’s   followed   by   the   second   and   third   eigenfaces   along   that   first   row.   And   the   next   rows  
contain   later   eigenfaces,   in   sequence,   from   left   to   right,   top   to   bottom.   The   early   components  
capture   most   of   the   variation   across   the   dataset,   and   later   components   capture   more   subtle  
variations   between   face   images.   How   do   we   use   these   components   to   represent   an  
individual   face   image?   For   each   image   in   the   database,   we   compute   a   set   of   weights,   one  
for   each   eigenface.   The   image,   denoted   here   as   F(x,y)   is   then   expressed   as   a   sum   of   the  
average   face   plus   a   weighted   combination   of   the   eigenfaces.   Here,   the   weights   are   denoted  
by   wi   and   the   eigenfaces   are   E(x,y),   which   is   also   indexed   by   i.   So   a   particular   face   is  
represented   as   the   sum   of   the   average   plus   a   little   bit   of   the   first   eigenface,   plus   a   little   bit   of  
the   second   eigenface,   and   so   on,   and   the   weighted   components   are   added   together   in   an  
element-by-element   way.   
 

[12:58]   Look   for   a   moment   at   the   average   face   in   the   upper   left   corner   and   the   first  
eigenface   next   to   it.   This   eigenface   has   a   fairly   uniform   dark   region   over   the   extent   of   the  
face   area.   An   individual   face   will   have   a   particular   weight   associated   with   this   first   eigenface,  
and   this   weight   could   be   positive   or   negative.   The   combination   alone   of   the   average   face  
with   some   amount   of   this   eigenface   effectively   would   lighten   or   darken   the   skin   tone.   Other  
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eigenfaces   lower   down   have   face-like   features   such   as   the   beard   on   the   far   right   of   the  
second   row.   A   person   who   really   has   a   beard   would   probably   have   a   large   weight  
associated   with   this   eigenface.   Adding   together   these   eigenfaces   with   different   weights  
would   produce   different   faces,   capturing   the   variation   that   exists   in   the   particular   training   set.  
 

[14:07]   [slide   8]   This   last   slide   illustrates   the   weighted   sum   in   a   slightly   different   way,   using  
the   eigenfaces   generated   from   yet   another   training   set.   Here   we   have   a   particular   face  
image   from   the   database   shown   at   the   top,   and   the   set   of   eigenfaces   are   arranged   along   a  
row   at   the   bottom,   and   this   face   image   is   represented   as   the   sum   of   the   mean   or   average  
face,   plus   weight   w1   times   the   first   eigenface,   plus   weight   w2   times   the   second   eigenface,  
and   so   on,   down   to   weight   k   times   the   kth   eigenface.   As   you   can   see   here,   there   are   these   k  
weights,   one   for   each   of   the   k   eigenfaces.   Given   the   eigenfaces,   computing   these   weights  
for   each   image   in   the   database   is   a   direct   calculation   involving   a   matrix   multiplication.   You  
can   think   of   the   set   of   weights   associated   with   a   particular   image   as   a   signature   that  
captures   that   image.   k   is   a   small   number   compared   to   the   M   pixels   in   the   original   image   -   k  
might   be   about   25   for   a   smallish   database   of   a   few   hundred   face   images.   So   each   image   is  
represented   by   a   set   of   k   weights   rather   than   representing   it   by   its   original   M   pixels.   So   it’s   a  
much   more   compact   representation.   
 

[15:44]   Now,   given   a   new   image   to   recognize,   the   first   step   in   the   recognition   process   is   to  
compute   a   set   of   weights   for   the   new   face,   using   the   eigenfaces.   We   can   then   search  
through   the   sets   of   weights   for   our   known   individuals   in   the   database,   to   find   the   one   that  
yields   the   closest   match.   There   are   different   metrics   we   can   use   to   compare   two   sets   of  
weights,   just   like   there   were   different   measures   of   similarity   that   we   could   use   for   the  
matching   process   in   stereo   or   motion.   The   simplest   metric   is   euclidean   distance,   which   is  
shown   in   the   bottom   right   corner   here.   i   is   the   index   for   each   weight,   and   m   refers   to   a  
sample   individual   in   the   database,   and   we   measure   how   different   are   two   sets   of   weights   by  
taking   the   sum   of   the   squared   differences   between   the   corresponding   weights.   This   gives   us  
a   way   to   find   identity   by   selecting   the   individual   in   the   database   whose   weights   minimize   this  
difference,   which   is   the   individual   whose   signature   weights   are   closest   to   the   weights  
computed   for   the   new   face   image.   
 

That’s   the   Eigenfaces   approach,   and   it’s   still   used   today   for   some   applications   of  
recognition.   To   see   results,   you’ll   be   exploring   the   application   of   this   approach   to   the   Yale  
face   database   in   your   next   assignment.  
 
 
 
 
 


