

1

Smoothing the image intensities

Strategy 1: compute the average intensity in a neighborhood around each image location

Strategy 2: combine intensities in the neighborhood using a smooth function that weighs nearby intensities more heavily, such as a Gaussian function

$$
G(x)=\left(\frac{1}{\sigma}\right) e^{\left(\frac{-x^{2}}{2 \sigma^{2}}\right)}
$$

2

4

5

7

The derivative of a convolution

6

8

9

Convolution in two dimensions

10

Smoothing a 2D image

To smooth a 2D image $I(x, y)$, we convolve with a 2D Gaussian:

$$
G(x, y)=\left(\frac{1}{\sigma^{2}}\right) e^{\left(\frac{-\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}\right)}
$$

result of
convolution
$\mathrm{G}(\mathrm{x}, \mathrm{y}) * \mathrm{I}(\mathrm{x}, \mathrm{y})$
image

12

13

2D Laplacian derivative operator

To differentiate the smoothed image, we will use the Laplacian operator:

$$
\nabla^{2}=\left(\frac{\partial^{2} I}{\partial x^{2}}+\frac{\partial^{2} I}{\partial y^{2}}\right)
$$

We can again combine the smoothing and derivative operations:

Detecting edges at all orientations

$$
\begin{aligned}
& * \begin{array}{|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 8 & 8 & 8 & 8 & 8 & 8 \\
\hline 8 & 8 & 8 & 8 & 8 & 8 \\
\hline 8 & 8 & 8 & 8 & 8 & 8 \\
\hline
\end{array} \\
& \text { convolution image } \\
& \text { operator }
\end{aligned}=
$$

also need to compute derivatives in the vertical direction!

14

Detect edges at all orientations

image
(with edges at many
orientations)

convolution result
(with zero-crossings
highlighted)

17

Computing the contrast of intensity changes

$\left[\nabla^{2} G(x, y)\right]^{*} I(x, y)$

zero-crossings with slope displayed as darkness

$$
\text { slope }=\sqrt{d x^{2}+d y^{2}}
$$

