

1

3

2

4

Practical considerations for methods based on pure translation:

- Error in initial motion measurements
- Local image features may have small range of orientations
- Velocities not constant locally

```
But... such strategies are good for
- detecting sudden movements
- tracking
- detecting boundaries
```

5

Measuring motion in one dimension

$\mathrm{V}_{\mathrm{x}}=$ velocity in x direction

- rightward movement: $\mathrm{V}_{\mathrm{x}}>0$
- leftward movement: $\mathrm{V}_{\mathrm{x}}<0$
- speed: $\left|\mathrm{V}_{\mathrm{x}}\right|$
- pixels/time step

$$
\mathrm{V}_{\mathrm{x}}=-\frac{\partial \mathrm{I} / \partial \mathrm{t}}{\partial \mathrm{I} / \partial \mathrm{x}}
$$

7

6

Measuring motion components in 2-D
(1) gradient of image intensity

$$
\nabla \mathrm{I}=(\partial \mathrm{I} / \partial \mathrm{x}, \partial \mathrm{I} / \partial \mathrm{y})
$$

(2) time derivative
$\partial \mathrm{I} / \partial \mathrm{t}$
(3) velocity along gradient:

$$
\mathrm{v}^{\perp}
$$

- movement in direction of gradient:
$\mathbf{v}^{\perp}>\mathbf{0}$
- movement opposite direction of gradient:

8

2D velocities $\left(\mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{y}}\right)$ consistent with v^{\perp}

All $\left(V_{x}, V_{y}\right)$ such that the component of $\left(V_{x}, V_{y}\right)$ in the direction of the gradient is \mathbf{v}^{\perp}
($\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}$): unit vector in direction of gradient
Use the dot product: $\quad\left(\mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{y}}\right) \cdot\left(\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}\right)=\mathbf{v}^{\perp}$

$$
\mathrm{V}_{\mathrm{x}} \mathrm{u}_{\mathrm{x}}+\mathrm{V}_{\mathrm{y}} \mathrm{u}_{\mathrm{y}}=\mathrm{v}^{\perp}
$$

9

10

