

Measuring image motion "aperture problem" "local" motion detectors only measure *component* of motion perpendicular to moving edge velocity field 2D velocity field not determined *uniquely* from the changing image need additional constraint to compute a unique velocity field

mystery Sohie! motion measurement strategy!

2

Practical considerations for methods based on pure translation:

- Error in initial motion measurements
- Local image features may have small range of orientations
- Velocities not constant locally

But... such strategies are good for

- detecting sudden movements
- tracking
- detecting boundaries

5

6

Ω

2D velocities ($V_x,\!V_y$) consistent with v^\perp

All (V_x, V_y) such that the component of (V_x, V_y) in the direction of the gradient is \mathbf{v}^{\perp}

 (u_x, u_y) : unit vector in direction of gradient

Use the *dot product:* $(V_x, V_y) \cdot (u_x, u_y) = v^{\perp}$

$$V_{x}u_{x} + V_{y} u_{y} = \mathbf{v}^{\perp}$$

9