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Video:   Computing   the   Velocity   Field  
 

[00:01]   [slide   1]   In   this   segment   of   the   course,   we’re   exploring   how   we   can   compute   the   motion  
of   features   in   the   changing   image.   In   particular,   how   can   we   compute   a   velocity   field   that  
assigns   a   direction   and   speed   of   movement   to   regions   in   the   image?   In   the   last   video,   you  
learned   about   the   aperture   problem   -    if   we   initially   detect   motion   by   analyzing   changes   taking  
place   over   time   in   small   regions   of   the   image,   we   can   only   directly   sense   the   component   of  
motion   in   the   direction   perpendicular   to   moving   edges.   To   resolve   the   two-dimensional   velocity  
at   each   location,   we   need   to   integrate   information   from   multiple   motion   components   over   an  
extended   region.   And   in   the   process,   we   need   to   incorporate   additional   constraints   that   will  
enable   us   to   compute   a   unique   pattern   of   motion   that’s   consistent   with   the   changing   image.  
 

[00:59]   The   last   video   elaborated   on   how   we   can   compute   the   motion   components,   by  
combining   measurements   of   how   intensity   is   changing   in   the   image   and   over   time.   We   showed  
how   we   can   compute   a   unit   vector   in   the   direction   of   the   gradient   of   image   intensity,   which  
indicates   the   direction   of   the   motion   component.   This   vector   is   denoted   here   with   ux   and   uy.   We  
also   showed   how   we   can   compute   the   velocity   of   the   edge   along   the   direction   of   the   gradient   -  
this   is   the   quantity   v-perpendicular   here.   The   velocity   that   we   ultimately   want   to   compute   is  
denoted   here   as   Vx   and   Vy.   At   each   location   where   we   can   measure   the   gradient   and  
perpendicular   motion,   we   can   write   an   equation   like   the   ones   in   the   blue   box   here,   that   captures  
the   possible   velocities   Vx   and   Vy   that   are   consistent   with   these   measurements.   Given   two  
motion   components   in   two   different   directions,   we   can   solve   for   Vx   and   Vy   -   we   can   find   one  
velocity   that’s   consistent   with   both   measurements.   
 

[02:01]   [slide   2]   In   practice,   there’s   likely   to   be   error   in   the   perpendicular   motions   that   are  
computed   from   the   image,   so   the   constraint   lines   from   any   pair   of   measurements   could  
intersect   at   a   different   velocities.   So   rather   than   just   consider   only   two   measurements   and   see  
where   the   lines   intersect,   we   combine   lots   of   measurements   within   an   extended   area   of   the  
image,   and   find   a   single   velocity   that   best   fits   all   the   measurements   simultaneously.   Previously  
we   said   that   the   calculation   on   the   left   of   each   of   these   equations   at   the   top   here,   needs   to   be  
exactly   equal   to   the   perpendicular   motion   that   we   measured   on   the   right   of   this   equation.   Now  
we’re   going   to   say   that   we   want   the   difference   between   the   two   sides   of   this   equation   to   be   as  
small   as   possible.   This   is   expressed   at   the   bottom   here,   where   we   take   the   difference   between  
the   two   sides   of   these   equations   at   the   top,   square   it,   and   sum   up   these   differences   over   all   the  
motion   components.   We   want   to   compute   a   single   value   for   Vx   and   Vy   that   minimizes   this   sum   -  
a   velocity   like   the   one   shown   with   the   black   arrow   in   the   diagram,   this   is   as   close   as   possible   to  
all   the   constraint   lines   simultaneously.   This   is   a   general   computational   method   known   as   least  
squares   fitting.   We   compute   parameters   that   best   fit   a   set   of   data   that   captures   constraints   on  
those   parameters.   This   is   the   same   process   that’s   used   for   performing   linear   regression   -   fitting  
a   line   to   a   set   of   data   points.   We   solve   problems   like   this   by   taking   the   derivative   of   this  
expression   with   respect   to   each   of   the   parameters   Vx   and   Vy,   and   setting   the   derivatives   to  
zero.   This   gives   the   velocity   that   best   fits   the   data   by   minimizing   this   sum.   In   the   next  
assignment,   you’ll   see   what   the   solution   looks   like   in   this   case.   
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[04:10]   This   approach   assumes   that   regions   of   the   image   just   undergo   pure   translation   across  
the   image,   so   there’s   only   one   velocity   to   compute   for   the   region   over   which   these  
measurements   are   being   combined.   I’d   like   to   briefly   introduce   a   more   general   constraint   that  
will   allow   us   to   preserve   the   variations   of   motion   that   may   exist   from   one   location   to   the   next  
across   the   image.   It’s   a   common   approach   used   in   many   computer   vision   applications,   and   it’s  
a   form   of   the   continuity   constraint   that   we   described   for   stereo   matching.   
 

[04:48]   [slide   3]   The   basic   idea   is   that   we   still   want   to   compute   a   velocity   field   that’s   consistent  
with   the   local   motion   components,   but   rather   than   say   the   velocities   in   a   region   are   all   the   same,  
we’ll   say   we   want   them   to   vary   as   little   as   possible.   Neighboring   velocities   could   be   different,  
but   we   want   to   minimize   the   change   in   velocity   from   one   location   to   the   next.   This   strategy  
encompasses   the   case   of   pure   translation.   Suppose   we   have   a   figure   like   this   ellipse,   that’s  
translating   down   and   to   the   right,   like   the   little   segments   around   the   contour   on   the   left   indicate.  
On   the   right   are   the   perpendicular   components   of   motion   at   each   point   around   the   contour,   that  
you   could   measure   from   the   image.   If   these   measurements   are   consistent   with   a   pure  
translation   of   the   object,   then   this   strategy   will   find   that   solution   -   there’s   no   variation   in   the  
computed   velocity   field   in   this   case,   so   it   certainly   must   be   the   solution   with   the   least   amount   of  
variation   possible,   given   the   image   measurements.   
 

[05:57]   [slide   4]   How   do   we   formally   express   the   computation   of   a   velocity   field   that   varies   the  
least?   First,   each   location   of   the   image   can   have   a   different   velocity.   If   we   imagine   computing  
velocity   vectors   along   a   contour,   there’s   a   different   velocity   Vx   and   Vy   at   each   location   on   the  
contour,   so   an   index   i   is   added   to   Vx   and   Vy   to   denote   the   velocity   at   a   particular   location   i   on  
the   contour.   And   at   each   location,   there’s   a   motion   component   that   constrains   the   velocity   that  
you   could   assign   at   that   location,   and   we   again   try   to   find   velocities   that   best   fit   the   motion  
components.   What’s   different   here   is   that   we   also   try   to   minimize   the   change   in   velocity   from  
one   location   to   the   next.   Here,   that   change   is   expressed   as   the   vector   difference   between   the  
velocity   at   some   location   i   and   the   velocity   at   its   neighbor   i+1.   We   can   add   up   all   the   changes   in  
velocity   over   an   extended   contour.   In   the   end,   we   compute   a   set   of   velocity   vectors   along   the  
contour   that   minimize   the   combination   of   fit   to   the   motion   components   and   amount   of   variation  
in   velocity   over   the   contour.   There’s   an   extra   parameter   lambda   in   the   middle   that   just   weighs  
the   relative   importance   of   fitting   the   data   versus   smoothness   of   the   velocity   field.   And   there   are  
standard   methods   for   solving   problems   like   this   -   here   I’d   really   just   like   you   to   give   you   a   sense  
of   the   basic   concept.   It’s   an   approach   that   comes   up   a   lot   in   visual   processing,   and   sometimes  
goes   under   the   name   of   “regularization”.   Does   this   have   any   relevance   to   human   motion  
perception?  
 

[08:00]   [slide   5]   To   address   this   question   and   also   get   an   intuition   for   situations   where   you   really  
need   a   more   general   assumption   like   this,   let’s   look   at   some   examples   of   velocity   fields  
computed   using   this   method.   Suppose   you   have   an   object   like   this   polygon   in   the   upper   left  
corner,   that’s   rotating   in   the   image   around   its   center.   The   left   picture   shows   the   true   velocities   at  
each   point   around   the   object,   and   you   can   see,   they   differ   from   one   location   to   the   next,  
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because   of   the   rotation.   To   the   right   are   the   perpendicular   components   of   motion   that   can   be  
measured   from   the   changing   image.   It’s   not   possible   to   compute   a   single   velocity   that’s  
consistent   with   all   these   measurements,   but   you   can   compute   a   pattern   of   velocity   that   has   the  
least   amount   of   variation   around   the   object,   and   that   in   this   case,   is   the   correct   pattern   of  
motion   using   this   strategy.   On   the   bottom   is   a   similar   example,   but   this   time,   it’s   the  
two-dimensional   projection   of   a   three-dimensional   wire-frame   object   that’s   rotating   around   a  
central   vertical   axis.   All   the   true   image   motions   in   this   case   are   horizontal   in   this   case,   but   the  
speed   of   motion   varies   along   the   edges   of   the   figure.   There   would   again   be   no   single   velocity  
that’s   consistent   with   these   motion   components,   which   are   shown   in   the   middle   here,   but   the  
smoothest   velocity   field   you   could   compute   from   these   components   is   the   correct   one.   
 

[09:44]   There   are   situations   where   this   strategy   would   give   an   incorrect   solution,   but   one   that’s  
consistent   with   human   motion   perception.   One   example   is   the   barber   pole   illusion,   where   the  
stripes   of   the   barber   pole   are   really   moving   horizontally   in   the   image,   but   the   stripes   look   like  
they’re   moving   downward.   In   this   case,   the   movement   happens   to   be   consistent   with   a  
downward   translation   of   the   stripes,   so   actually   any   method   for   computing   the   velocity   field   that  
assumes   pure   translation   would   predict   this   result.   In   the   case   of   a   rotating   spiral,   as   you   see  
here,   the   two   spirals   in   this   pattern   look   like   they’re   either   expanding   outward   or   contracting  
inward,   but   that’s   just   an   illusion   -   the   pattern   is   really   rotating   around   its   center,   so   all   the   points  
on   the   contours   are   following   a   circular   path   and   not   really   moving   inward   or   outward.   This  
percept   is   consistent   with   the   smoothest   pattern   of   motion   that   could   be   computed   for   this  
pattern.   Finally,   if   you   spin   an   egg   around   its   center   and   observe   its   motion   as   it   rotates,   it’ll   look  
like   the   long   and   short   axes   of   the   egg   are   wobbling   in   and   out,   and   the   egg   looks   nonrigid  
rather   than   looking   like   a   rigid   object   rotating   around   its   center.   This   model   also   predicts   this  
percept   of   nonrigid   motion.   And   there   are   many   other   examples   like   this,   of   smooth   contours   in  
rotation,   where   you   get   an   incorrect   pattern   of   motion   if   you   just   find   the   smoothest   velocity  
that’s   consistent   with   the   changing   image,   but   we   also   perceive   an   incorrect   pattern   of   motion.  
The   take-home   message   here   is   that   there   are   other   constraints   that   we   can   use   to   compute   a  
velocity   field,   including   something   very   general   like   this,   that   enable   us   to   capture   the   variations  
in   velocity   that   can   be   important   for   tasks   like   recovering   three-dimensional   shape   and  
analyzing   nonrigid   motions   like   we   see   in   facial   expressions   or   wiggling   jello.  
 

[12:05]   [slide   6]   The   last   thing   I’d   like   to   touch   on   is   an   aspect   of   the   neural   processing   of   motion  
information,   and   in   particular,   ask   if   there’s   evidence   of   neurons   analyzing   image   motion   in   two  
stages   where   they   first   measure   only   the   components   of   motion   perpendicular   to   moving   edges,  
because   of   the   aperture   problem,   and   later   integrate   these   components   to   determine   the  
two-dimensional   motion   of   features   in   the   image.   Movshon   and   colleagues   explored   this  
question   in   monkeys,   and   in   their   study   they   recorded   the   activity   of   neurons   in   two   areas,   V1  
that   you   learned   about   earlier,   and   an   area   known   as   MT,   which   stands   for   Middle   Temporal  
area.   Neurons   in   area   V1   project   to   neurons   in   MT,   and   in   V1,   complex   cells   are   often   selective  
for   the   direction   of   motion   -   if   you   move   a   bar   at   their   preferred   orientation   back   and   forth   across  
their   receptive   field,   they   might   respond   to   one   direction   of   motion   but   not   the   other.   In   MT,   most  
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neurons   are   selective   for   the   direction   and   speed   of   motion,   and   if   you   damage   MT,   there’s   a  
loss   of   visual   abilities   that   depend   on   motion   information,   like   the   ability   to   track   moving   objects  
with   the   eyes.   
 

[13:29]   [slide   7]   These   experiments   used   visual   stimuli   that   consist   of   superimposed   sine-wave  
gratings   of   the   sort   you   saw   in   the   lecture   notes   by   Michael   Landy   on   spatial   frequency  
channels   in   human   vision.   I’ll   go   to   an   online   demonstration   to   see   what   these   plaids   look   like.  
On   the   left   are   two   individual   sine-wave   gratings,   each   with   a   single   orientation   moving   in   a  
particular   direction,   and   we   only   sense   the   motion   perpendicular   to   their   orientation   here.   If   you  
superimpose   those   two   patterns   at   each   moment,   you   create   something   like   what’s   shown   in  
the   upper   right   corner,   which   looks   like   a   single   rigid   plaid   pattern   moving   down   and   to   the   left.  
Movshon   and   his   colleagues   recorded   the   responses   of   neurons   to   moving   plaids   with   different  
component   gratings.   
 

[14:40]   [slide   8]   This   slide   captures   the   basic   logic.   Imagine   you’re   recording   from   a   neuron  
engaged   in   the   first   step   of   motion   measurement   -   measuring   just   the   perpendicular  
components   of   motion,   and   suppose   in   particular,   that   you’re   observing   a   neuron   that   responds  
to   vertically   oriented   image   features   moving   to   the   right.   Along   the   top   here   are   three   sample  
stimuli,   just   shown   in   a   diagrammatic   way.   The   first   two   have   a   vertical   component   embedded   in  
the   image   that’s   moving   to   the   right,   but   because   of   the   addition   of   a   horizontal   pattern   moving  
up   or   down,   the   overall   motion   of   the   combined   pattern   is   in   an   oblique   direction,   upward   or  
downward,   as   shown   with   the   red   arrows.   The   third   example   has   components   that   are   oriented  
obliquely,   but   when   combined,   the   overall   pattern   is   moving   to   the   right.   
 

[15:42]   So   now   let’s   look   at   the   signature   response   pattern   that   we’d   expect   for   neurons  
engaged   in   the   two   stages   of   motion   measurement.   If   a   particular   neuron   only   measures   motion  
components,   and   let’s   say   it   prefers   a   vertically   oriented   component   moving   to   the   right.   It  
should   respond   to   the   first   two   patterns   here   that   have   this   component   embedded.   On   the   other  
hand,   such   a   neuron   would   not   respond   to   the   last   example,   because   the   last   example   has   an  
overall   motion   to   the   right,   but   doesn’t   have   a   vertical   component   embedded   inside.   Now   what   if  
you   were   recording   from   a   neuron   that   integrates   motion   components   together   to   resolve   the  
real   direction   of   motion   in   two   dimensions.   And   suppose   this   neuron   prefers   an   overall   pattern  
motion   to   the   right.   This   type   of   neuron   would   not   respond   in   the   first   two   cases,   because   their  
overall   motion   is   in   an   oblique   direction.   But   it   would   respond   to   the   last   pattern   whose   overall  
motion   is   to   the   right.   
 

[16:58]   [slide   9]   The   researchers   discovered   that   in   the   earlier   stage   of   processing   in   area   V1,  
all   the   neurons   behave   like   component   cells.   Visual   cortex   is   a   layered   structure   with   6   primary  
layers.   Inputs   from   other   areas   of   the   brain   enter   a   particular   area   in   certain   layers   like   layers   4  
and   6,   and   information   is   later   processed   by   neurons   in   other   layers,   like   2,   3,   and   5,   and   then  
passed   on   to   other   areas   of   the   brain.   They   discovered   that   in   area   MT,   neurons   closer   to   the  
input   layer   behave   like   component   cells   and   in   the   later   stages   of   processing   you   find   neurons  
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that   behave   like   pattern   cells.   So   there’s   direct   evidence   for   a   two-stage   motion   measurement  
process   in   the   brain   of   monkeys.   
 

And   finally,   just   a   quick   note   that   not   all   components   are   alike   -   perceptually   we   don’t   combine  
them   when   their   spatial   frequency   is   very   different,   or   they   move   with   very   different   speeds,   or  
the   components   have   very   different   stereo   disparity   and   are   perceived   to   be   located   at   different  
depths.   These   observations   provide   some   hints   about   how   the   motion   integration   might   take  
place   at   different   scales   or   at   different   depths.   
 
 
 


