Memory Management – Part 2

Readings: Chapter 7

Paging

- Partition memory into equal fixed-size chunks that are relatively small
- Process is also divided into small fixed-size chunks of the same size

Addresses

- **Logical**
 - Reference to a memory location independent of the current assignment of data to memory

- **Relative**
 - A particular example of logical address, in which the address is expressed as a location relative to some known point

- **Physical or Absolute**
 - Actual location in main memory

Figure 7.9 Assignment of Process Pages to Free Frames

© 2017 Pearson Education, Inc., Hoboken, N.J. All rights reserved.
Page Table

- Maintained by operating system for each process
- Contains the frame location for each page in the process
- Processor must know how to access for the current process
- Used by processor to produce a physical address

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

(a) Partitioning

(b) Paging

(c) Segmentation

Relative address = 1502
Logical address = Page# = 1, Offset = 478
Logical address = Segment# = 1, Offset = 752

Figure 7.11 Logical Addresses

(a) Paging

6-bit page # 10-bit offset

16-bit physical address

Figure 7.12 Examples of Logical-to-Physical Address Translation
Segmentation

- A program can be subdivided into segments
 - May vary in length
 - There is a maximum length

- Addressing consists of two parts:
 - Segment number
 - An offset

- Similar to dynamic partitioning

- Eliminates internal fragmentation

Address Translation

- Another consequence of unequal size segments is that there is no simple relationship between logical addresses and physical addresses
- The following steps are needed for address translation:
 - Extract the segment number as the leftmost \(n \) bits of the logical address
 - Use the segment number as an index into the process segment table to find the starting physical address of the segment
 - Compare the offset, expressed in the rightmost \(m \) bits, to the length of the segment. If the offset is greater than or equal to the length, the address is invalid
 - The desired physical address is the sum of the starting physical address of the segment plus the offset

![Figure 7.12 Examples of Logical-to-Physical Address Translation](image)

- Usually visible
 - Provided as a convenience for organizing programs and data

- Typically the programmer will assign programs and data to different segments

- For purposes of modular programming the program or data may be further broken down into multiple segments
 - The principal inconvenience of this service is that the programmer must be aware of the maximum segment size limitation

![Figure 7.12 Examples of Logical-to-Physical Address Translation](image)